MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimsqzlem Structured version   Visualization version   GIF version

Theorem rlimsqzlem 14320
Description: Lemma for rlimsqz 14321 and rlimsqz2 14322. (Contributed by Mario Carneiro, 18-Sep-2014.) (Revised by Mario Carneiro, 20-May-2016.)
Hypotheses
Ref Expression
rlimsqzlem.m (𝜑𝑀 ∈ ℝ)
rlimsqzlem.e (𝜑𝐸 ∈ ℂ)
rlimsqzlem.1 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
rlimsqzlem.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimsqzlem.3 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
rlimsqzlem.4 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
Assertion
Ref Expression
rlimsqzlem (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐸   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem rlimsqzlem
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimsqzlem.1 . 2 (𝜑 → (𝑥𝐴𝐵) ⇝𝑟 𝐷)
2 rlimsqzlem.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℝ)
32ad3antrrr 765 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀 ∈ ℝ)
42ad2antrr 761 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑀 ∈ ℝ)
5 elicopnf 12218 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℝ → (𝑧 ∈ (𝑀[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝑀𝑧)))
64, 5syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (𝑧 ∈ (𝑀[,)+∞) ↔ (𝑧 ∈ ℝ ∧ 𝑀𝑧)))
76simprbda 652 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → 𝑧 ∈ ℝ)
87adantrr 752 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑧 ∈ ℝ)
9 eqid 2621 . . . . . . . . . . . . . . . . 17 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
10 rlimsqzlem.2 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
119, 10dmmptd 5986 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
12 rlimss 14174 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵) ⇝𝑟 𝐷 → dom (𝑥𝐴𝐵) ⊆ ℝ)
131, 12syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom (𝑥𝐴𝐵) ⊆ ℝ)
1411, 13eqsstr3d 3624 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
1514adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ+) → 𝐴 ⊆ ℝ)
1615sselda 3587 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
1716adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑥 ∈ ℝ)
186simplbda 653 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → 𝑀𝑧)
1918adantrr 752 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀𝑧)
20 simprr 795 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑧𝑥)
213, 8, 17, 19, 20letrd 10145 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑀𝑥)
22 rlimsqzlem.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑀𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2322anassrs 679 . . . . . . . . . . . 12 (((𝜑𝑥𝐴) ∧ 𝑀𝑥) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2423adantllr 754 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑀𝑥) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
2521, 24syldan 487 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)))
26 rlimsqzlem.3 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
27 rlimsqzlem.e . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ ℂ)
2827adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐸 ∈ ℂ)
2926, 28subcld 10343 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐶𝐸) ∈ ℂ)
3029abscld 14116 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(𝐶𝐸)) ∈ ℝ)
3130adantlr 750 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (abs‘(𝐶𝐸)) ∈ ℝ)
3231adantr 481 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐶𝐸)) ∈ ℝ)
33 rlimcl 14175 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝐵) ⇝𝑟 𝐷𝐷 ∈ ℂ)
341, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℂ)
3534adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → 𝐷 ∈ ℂ)
3610, 35subcld 10343 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐵𝐷) ∈ ℂ)
3736abscld 14116 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (abs‘(𝐵𝐷)) ∈ ℝ)
3837adantlr 750 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) → (abs‘(𝐵𝐷)) ∈ ℝ)
3938adantr 481 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (abs‘(𝐵𝐷)) ∈ ℝ)
40 rpre 11790 . . . . . . . . . . . 12 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
4140ad3antlr 766 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → 𝑦 ∈ ℝ)
42 lelttr 10079 . . . . . . . . . . 11 (((abs‘(𝐶𝐸)) ∈ ℝ ∧ (abs‘(𝐵𝐷)) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)) ∧ (abs‘(𝐵𝐷)) < 𝑦) → (abs‘(𝐶𝐸)) < 𝑦))
4332, 39, 41, 42syl3anc 1323 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → (((abs‘(𝐶𝐸)) ≤ (abs‘(𝐵𝐷)) ∧ (abs‘(𝐵𝐷)) < 𝑦) → (abs‘(𝐶𝐸)) < 𝑦))
4425, 43mpand 710 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ (𝑧 ∈ (𝑀[,)+∞) ∧ 𝑧𝑥)) → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦))
4544expr 642 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑥𝐴) ∧ 𝑧 ∈ (𝑀[,)+∞)) → (𝑧𝑥 → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦)))
4645an32s 845 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) ∧ 𝑥𝐴) → (𝑧𝑥 → ((abs‘(𝐵𝐷)) < 𝑦 → (abs‘(𝐶𝐸)) < 𝑦)))
4746a2d 29 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) ∧ 𝑥𝐴) → ((𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4847ralimdva 2957 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑧 ∈ (𝑀[,)+∞)) → (∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
4948reximdva 3012 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∃𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
5049ralimdva 2957 . . 3 (𝜑 → (∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦) → ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
5110ralrimiva 2961 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℂ)
5251, 14, 34, 2rlim3 14170 . . 3 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐷 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐵𝐷)) < 𝑦)))
5326ralrimiva 2961 . . . 4 (𝜑 → ∀𝑥𝐴 𝐶 ∈ ℂ)
5453, 14, 27, 2rlim3 14170 . . 3 (𝜑 → ((𝑥𝐴𝐶) ⇝𝑟 𝐸 ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ (𝑀[,)+∞)∀𝑥𝐴 (𝑧𝑥 → (abs‘(𝐶𝐸)) < 𝑦)))
5550, 52, 543imtr4d 283 . 2 (𝜑 → ((𝑥𝐴𝐵) ⇝𝑟 𝐷 → (𝑥𝐴𝐶) ⇝𝑟 𝐸))
561, 55mpd 15 1 (𝜑 → (𝑥𝐴𝐶) ⇝𝑟 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1987  wral 2907  wrex 2908  wss 3559   class class class wbr 4618  cmpt 4678  dom cdm 5079  cfv 5852  (class class class)co 6610  cc 9885  cr 9886  +∞cpnf 10022   < clt 10025  cle 10026  cmin 10217  +crp 11783  [,)cico 12126  abscabs 13915  𝑟 crli 14157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-pm 7812  df-en 7907  df-dom 7908  df-sdom 7909  df-sup 8299  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-z 11329  df-uz 11639  df-rp 11784  df-ico 12130  df-seq 12749  df-exp 12808  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-rlim 14161
This theorem is referenced by:  rlimsqz  14321  rlimsqz2  14322  cxploglim2  24618  logfacrlim  24862  logexprlim  24863
  Copyright terms: Public domain W3C validator