MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqof2 Structured version   Visualization version   GIF version

Theorem seqof2 13418
Description: Distribute function operation through a sequence. Maps-to notation version of seqof 13417. (Contributed by Mario Carneiro, 7-Jul-2017.)
Hypotheses
Ref Expression
seqof2.1 (𝜑𝐴𝑉)
seqof2.2 (𝜑𝑁 ∈ (ℤ𝑀))
seqof2.3 (𝜑 → (𝑀...𝑁) ⊆ 𝐵)
seqof2.4 ((𝜑 ∧ (𝑥𝐵𝑧𝐴)) → 𝑋𝑊)
Assertion
Ref Expression
seqof2 (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)))
Distinct variable groups:   𝑥,𝑧,𝐴   𝑥,𝑀,𝑧   𝑥,𝑁,𝑧   𝜑,𝑥,𝑧   𝑧, +   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑧)   + (𝑥)   𝑉(𝑥,𝑧)   𝑊(𝑥,𝑧)   𝑋(𝑥,𝑧)

Proof of Theorem seqof2
Dummy variables 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqof2.1 . . 3 (𝜑𝐴𝑉)
2 seqof2.2 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 nfv 1906 . . . . . 6 𝑥(𝜑𝑛 ∈ (𝑀...𝑁))
4 nffvmpt1 6675 . . . . . . 7 𝑥((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛)
5 nfcv 2977 . . . . . . . 8 𝑥𝐴
6 nffvmpt1 6675 . . . . . . . 8 𝑥((𝑥𝐵𝑋)‘𝑛)
75, 6nfmpt 5155 . . . . . . 7 𝑥(𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))
84, 7nfeq 2991 . . . . . 6 𝑥((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))
93, 8nfim 1888 . . . . 5 𝑥((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
10 eleq1w 2895 . . . . . . 7 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
1110anbi2d 628 . . . . . 6 (𝑥 = 𝑛 → ((𝜑𝑥 ∈ (𝑀...𝑁)) ↔ (𝜑𝑛 ∈ (𝑀...𝑁))))
12 fveq2 6664 . . . . . . 7 (𝑥 = 𝑛 → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛))
13 fveq2 6664 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑥𝐵𝑋)‘𝑥) = ((𝑥𝐵𝑋)‘𝑛))
1413mpteq2dv 5154 . . . . . . 7 (𝑥 = 𝑛 → (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
1512, 14eqeq12d 2837 . . . . . 6 (𝑥 = 𝑛 → (((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) ↔ ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛))))
1611, 15imbi12d 346 . . . . 5 (𝑥 = 𝑛 → (((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥))) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))))
17 seqof2.3 . . . . . . . 8 (𝜑 → (𝑀...𝑁) ⊆ 𝐵)
1817sselda 3966 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝑥𝐵)
191adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀...𝑁)) → 𝐴𝑉)
2019mptexd 6979 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴𝑋) ∈ V)
21 eqid 2821 . . . . . . . 8 (𝑥𝐵 ↦ (𝑧𝐴𝑋)) = (𝑥𝐵 ↦ (𝑧𝐴𝑋))
2221fvmpt2 6772 . . . . . . 7 ((𝑥𝐵 ∧ (𝑧𝐴𝑋) ∈ V) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴𝑋))
2318, 20, 22syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴𝑋))
2418adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑥𝐵)
25 simpll 763 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝜑)
26 simpr 485 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑧𝐴)
27 seqof2.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑧𝐴)) → 𝑋𝑊)
2825, 24, 26, 27syl12anc 832 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → 𝑋𝑊)
29 eqid 2821 . . . . . . . . 9 (𝑥𝐵𝑋) = (𝑥𝐵𝑋)
3029fvmpt2 6772 . . . . . . . 8 ((𝑥𝐵𝑋𝑊) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
3124, 28, 30syl2anc 584 . . . . . . 7 (((𝜑𝑥 ∈ (𝑀...𝑁)) ∧ 𝑧𝐴) → ((𝑥𝐵𝑋)‘𝑥) = 𝑋)
3231mpteq2dva 5153 . . . . . 6 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)) = (𝑧𝐴𝑋))
3323, 32eqtr4d 2859 . . . . 5 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑥) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑥)))
349, 16, 33chvarfv 2233 . . . 4 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)))
35 nfcv 2977 . . . . 5 𝑦((𝑥𝐵𝑋)‘𝑛)
36 nfcsb1v 3906 . . . . . 6 𝑧𝑦 / 𝑧(𝑥𝐵𝑋)
37 nfcv 2977 . . . . . 6 𝑧𝑛
3836, 37nffv 6674 . . . . 5 𝑧(𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛)
39 csbeq1a 3896 . . . . . 6 (𝑧 = 𝑦 → (𝑥𝐵𝑋) = 𝑦 / 𝑧(𝑥𝐵𝑋))
4039fveq1d 6666 . . . . 5 (𝑧 = 𝑦 → ((𝑥𝐵𝑋)‘𝑛) = (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛))
4135, 38, 40cbvmpt 5159 . . . 4 (𝑧𝐴 ↦ ((𝑥𝐵𝑋)‘𝑛)) = (𝑦𝐴 ↦ (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛))
4234, 41syl6eq 2872 . . 3 ((𝜑𝑛 ∈ (𝑀...𝑁)) → ((𝑥𝐵 ↦ (𝑧𝐴𝑋))‘𝑛) = (𝑦𝐴 ↦ (𝑦 / 𝑧(𝑥𝐵𝑋)‘𝑛)))
431, 2, 42seqof 13417 . 2 (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑦𝐴 ↦ (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁)))
44 nfcv 2977 . . 3 𝑦(seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)
45 nfcv 2977 . . . . 5 𝑧𝑀
46 nfcv 2977 . . . . 5 𝑧 +
4745, 46, 36nfseq 13369 . . . 4 𝑧seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))
48 nfcv 2977 . . . 4 𝑧𝑁
4947, 48nffv 6674 . . 3 𝑧(seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁)
5039seqeq3d 13367 . . . 4 (𝑧 = 𝑦 → seq𝑀( + , (𝑥𝐵𝑋)) = seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋)))
5150fveq1d 6666 . . 3 (𝑧 = 𝑦 → (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁) = (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁))
5244, 49, 51cbvmpt 5159 . 2 (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)) = (𝑦𝐴 ↦ (seq𝑀( + , 𝑦 / 𝑧(𝑥𝐵𝑋))‘𝑁))
5343, 52syl6eqr 2874 1 (𝜑 → (seq𝑀( ∘f + , (𝑥𝐵 ↦ (𝑧𝐴𝑋)))‘𝑁) = (𝑧𝐴 ↦ (seq𝑀( + , (𝑥𝐵𝑋))‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3495  csb 3882  wss 3935  cmpt 5138  cfv 6349  (class class class)co 7145  f cof 7396  cuz 12232  ...cfz 12882  seqcseq 13359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-seq 13360
This theorem is referenced by:  mtestbdd  24922  lgamgulm2  25541  lgamcvglem  25545
  Copyright terms: Public domain W3C validator