Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signswmnd Structured version   Visualization version   GIF version

Theorem signswmnd 31827
Description: 𝑊 is a monoid structure on {-1, 0, 1} which operation retains the right side, but skips zeroes. This will be used for skipping zeroes when counting sign changes. (Contributed by Thierry Arnoux, 9-Sep-2018.)
Hypotheses
Ref Expression
signsw.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsw.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
Assertion
Ref Expression
signswmnd 𝑊 ∈ Mnd
Distinct variable group:   𝑎,𝑏,
Allowed substitution hints:   𝑊(𝑎,𝑏)

Proof of Theorem signswmnd
Dummy variables 𝑢 𝑒 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 signsw.p . . . . . 6 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
21signspval 31822 . . . . 5 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
3 ifcl 4511 . . . . 5 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → if(𝑣 = 0, 𝑢, 𝑣) ∈ {-1, 0, 1})
42, 3eqeltrd 2913 . . . 4 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → (𝑢 𝑣) ∈ {-1, 0, 1})
51signspval 31822 . . . . . . . . . . . . 13 (((𝑢 𝑣) ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = if(𝑤 = 0, (𝑢 𝑣), 𝑤))
64, 5stoic3 1777 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = if(𝑤 = 0, (𝑢 𝑣), 𝑤))
7 iftrue 4473 . . . . . . . . . . . 12 (𝑤 = 0 → if(𝑤 = 0, (𝑢 𝑣), 𝑤) = (𝑢 𝑣))
86, 7sylan9eq 2876 . . . . . . . . . . 11 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 𝑣))
98adantr 483 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 𝑣))
1023adant3 1128 . . . . . . . . . . 11 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
1110ad2antrr 724 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
12 iftrue 4473 . . . . . . . . . . 11 (𝑣 = 0 → if(𝑣 = 0, 𝑢, 𝑣) = 𝑢)
1312adantl 484 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → if(𝑣 = 0, 𝑢, 𝑣) = 𝑢)
149, 11, 133eqtrd 2860 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = 𝑢)
15 simp1 1132 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → 𝑢 ∈ {-1, 0, 1})
161signspval 31822 . . . . . . . . . . . . . 14 ((𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑣 𝑤) = if(𝑤 = 0, 𝑣, 𝑤))
17163adant1 1126 . . . . . . . . . . . . 13 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑣 𝑤) = if(𝑤 = 0, 𝑣, 𝑤))
18 simpl2 1188 . . . . . . . . . . . . . 14 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → 𝑣 ∈ {-1, 0, 1})
19 simpl3 1189 . . . . . . . . . . . . . 14 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → 𝑤 ∈ {-1, 0, 1})
2018, 19ifclda 4501 . . . . . . . . . . . . 13 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → if(𝑤 = 0, 𝑣, 𝑤) ∈ {-1, 0, 1})
2117, 20eqeltrd 2913 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑣 𝑤) ∈ {-1, 0, 1})
221signspval 31822 . . . . . . . . . . . 12 ((𝑢 ∈ {-1, 0, 1} ∧ (𝑣 𝑤) ∈ {-1, 0, 1}) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
2315, 21, 22syl2anc 586 . . . . . . . . . . 11 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
2423ad2antrr 724 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
25 iftrue 4473 . . . . . . . . . . . . 13 (𝑤 = 0 → if(𝑤 = 0, 𝑣, 𝑤) = 𝑣)
2617, 25sylan9eq 2876 . . . . . . . . . . . 12 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → (𝑣 𝑤) = 𝑣)
27 id 22 . . . . . . . . . . . 12 (𝑣 = 0 → 𝑣 = 0)
2826, 27sylan9eq 2876 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑣 𝑤) = 0)
2928iftrued 4475 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)) = 𝑢)
3024, 29eqtrd 2856 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = 𝑢)
3114, 30eqtr4d 2859 . . . . . . . 8 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
326ad2antrr 724 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = if(𝑤 = 0, (𝑢 𝑣), 𝑤))
337ad2antlr 725 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if(𝑤 = 0, (𝑢 𝑣), 𝑤) = (𝑢 𝑣))
3410ad2antrr 724 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 𝑣) = if(𝑣 = 0, 𝑢, 𝑣))
35 iffalse 4476 . . . . . . . . . . . 12 𝑣 = 0 → if(𝑣 = 0, 𝑢, 𝑣) = 𝑣)
3635adantl 484 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if(𝑣 = 0, 𝑢, 𝑣) = 𝑣)
3734, 36eqtrd 2856 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 𝑣) = 𝑣)
3832, 33, 373eqtrd 2860 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = 𝑣)
3923ad2antrr 724 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
40 simpr 487 . . . . . . . . . . . 12 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ¬ 𝑣 = 0)
4117ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑣 𝑤) = if(𝑤 = 0, 𝑣, 𝑤))
4225ad2antlr 725 . . . . . . . . . . . . . 14 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if(𝑤 = 0, 𝑣, 𝑤) = 𝑣)
4341, 42eqtrd 2856 . . . . . . . . . . . . 13 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑣 𝑤) = 𝑣)
4443eqeq1d 2823 . . . . . . . . . . . 12 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑣 𝑤) = 0 ↔ 𝑣 = 0))
4540, 44mtbird 327 . . . . . . . . . . 11 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ¬ (𝑣 𝑤) = 0)
4645iffalsed 4478 . . . . . . . . . 10 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)) = (𝑣 𝑤))
4739, 46, 433eqtrd 2860 . . . . . . . . 9 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → (𝑢 (𝑣 𝑤)) = 𝑣)
4838, 47eqtr4d 2859 . . . . . . . 8 ((((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) ∧ ¬ 𝑣 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
4931, 48pm2.61dan 811 . . . . . . 7 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
50 iffalse 4476 . . . . . . . . 9 𝑤 = 0 → if(𝑤 = 0, (𝑢 𝑣), 𝑤) = 𝑤)
516, 50sylan9eq 2876 . . . . . . . 8 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = 𝑤)
5223adantr 483 . . . . . . . . 9 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → (𝑢 (𝑣 𝑤)) = if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)))
53 simpr 487 . . . . . . . . . . 11 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ¬ 𝑤 = 0)
54 iffalse 4476 . . . . . . . . . . . . 13 𝑤 = 0 → if(𝑤 = 0, 𝑣, 𝑤) = 𝑤)
5517, 54sylan9eq 2876 . . . . . . . . . . . 12 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → (𝑣 𝑤) = 𝑤)
5655eqeq1d 2823 . . . . . . . . . . 11 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ((𝑣 𝑤) = 0 ↔ 𝑤 = 0))
5753, 56mtbird 327 . . . . . . . . . 10 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ¬ (𝑣 𝑤) = 0)
5857iffalsed 4478 . . . . . . . . 9 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → if((𝑣 𝑤) = 0, 𝑢, (𝑣 𝑤)) = (𝑣 𝑤))
5952, 58, 553eqtrd 2860 . . . . . . . 8 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → (𝑢 (𝑣 𝑤)) = 𝑤)
6051, 59eqtr4d 2859 . . . . . . 7 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) ∧ ¬ 𝑤 = 0) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
6149, 60pm2.61dan 811 . . . . . 6 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1} ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
62613expa 1114 . . . . 5 (((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) ∧ 𝑤 ∈ {-1, 0, 1}) → ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
6362ralrimiva 3182 . . . 4 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
644, 63jca 514 . . 3 ((𝑢 ∈ {-1, 0, 1} ∧ 𝑣 ∈ {-1, 0, 1}) → ((𝑢 𝑣) ∈ {-1, 0, 1} ∧ ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤))))
6564rgen2 3203 . 2 𝑢 ∈ {-1, 0, 1}∀𝑣 ∈ {-1, 0, 1} ((𝑢 𝑣) ∈ {-1, 0, 1} ∧ ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤)))
66 c0ex 10635 . . . 4 0 ∈ V
6766tpid2 4706 . . 3 0 ∈ {-1, 0, 1}
681signsw0glem 31823 . . 3 𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)
69 oveq1 7163 . . . . . 6 (𝑒 = 0 → (𝑒 𝑢) = (0 𝑢))
7069eqeq1d 2823 . . . . 5 (𝑒 = 0 → ((𝑒 𝑢) = 𝑢 ↔ (0 𝑢) = 𝑢))
7170ovanraleqv 7180 . . . 4 (𝑒 = 0 → (∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢) ↔ ∀𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)))
7271rspcev 3623 . . 3 ((0 ∈ {-1, 0, 1} ∧ ∀𝑢 ∈ {-1, 0, 1} ((0 𝑢) = 𝑢 ∧ (𝑢 0) = 𝑢)) → ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢))
7367, 68, 72mp2an 690 . 2 𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢)
74 signsw.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
751, 74signswbase 31824 . . 3 {-1, 0, 1} = (Base‘𝑊)
761, 74signswplusg 31825 . . 3 = (+g𝑊)
7775, 76ismnd 17914 . 2 (𝑊 ∈ Mnd ↔ (∀𝑢 ∈ {-1, 0, 1}∀𝑣 ∈ {-1, 0, 1} ((𝑢 𝑣) ∈ {-1, 0, 1} ∧ ∀𝑤 ∈ {-1, 0, 1} ((𝑢 𝑣) 𝑤) = (𝑢 (𝑣 𝑤))) ∧ ∃𝑒 ∈ {-1, 0, 1}∀𝑢 ∈ {-1, 0, 1} ((𝑒 𝑢) = 𝑢 ∧ (𝑢 𝑒) = 𝑢)))
7865, 73, 77mpbir2an 709 1 𝑊 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  ifcif 4467  {cpr 4569  {ctp 4571  cop 4573  cfv 6355  (class class class)co 7156  cmpo 7158  0cc0 10537  1c1 10538  -cneg 10871  ndxcnx 16480  Basecbs 16483  +gcplusg 16565  Mndcmnd 17911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-mgm 17852  df-sgrp 17901  df-mnd 17912
This theorem is referenced by:  signstcl  31835  signstf  31836  signstf0  31838  signstfvn  31839
  Copyright terms: Public domain W3C validator