Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimltxrmpt Structured version   Visualization version   GIF version

Theorem smfpimltxrmpt 43055
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimltxrmpt.x 𝑥𝜑
smfpimltxrmpt.s (𝜑𝑆 ∈ SAlg)
smfpimltxrmpt.b ((𝜑𝑥𝐴) → 𝐵𝑉)
smfpimltxrmpt.f (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfpimltxrmpt.r (𝜑𝑅 ∈ ℝ*)
Assertion
Ref Expression
smfpimltxrmpt (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfpimltxrmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfmpt1 5164 . . . . . 6 𝑥(𝑥𝐴𝐵)
21nfdm 5823 . . . . 5 𝑥dom (𝑥𝐴𝐵)
3 nfcv 2977 . . . . 5 𝑦dom (𝑥𝐴𝐵)
4 nfv 1915 . . . . 5 𝑦((𝑥𝐴𝐵)‘𝑥) < 𝑅
5 nfcv 2977 . . . . . . 7 𝑥𝑦
61, 5nffv 6680 . . . . . 6 𝑥((𝑥𝐴𝐵)‘𝑦)
7 nfcv 2977 . . . . . 6 𝑥 <
8 nfcv 2977 . . . . . 6 𝑥𝑅
96, 7, 8nfbr 5113 . . . . 5 𝑥((𝑥𝐴𝐵)‘𝑦) < 𝑅
10 fveq2 6670 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑦))
1110breq1d 5076 . . . . 5 (𝑥 = 𝑦 → (((𝑥𝐴𝐵)‘𝑥) < 𝑅 ↔ ((𝑥𝐴𝐵)‘𝑦) < 𝑅))
122, 3, 4, 9, 11cbvrabw 3489 . . . 4 {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑦 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑦) < 𝑅}
1312a1i 11 . . 3 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑦 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑦) < 𝑅})
14 nfcv 2977 . . . 4 𝑦(𝑥𝐴𝐵)
15 smfpimltxrmpt.s . . . 4 (𝜑𝑆 ∈ SAlg)
16 smfpimltxrmpt.f . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
17 eqid 2821 . . . 4 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
18 smfpimltxrmpt.r . . . 4 (𝜑𝑅 ∈ ℝ*)
1914, 15, 16, 17, 18smfpimltxr 43044 . . 3 (𝜑 → {𝑦 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑦) < 𝑅} ∈ (𝑆t dom (𝑥𝐴𝐵)))
2013, 19eqeltrd 2913 . 2 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} ∈ (𝑆t dom (𝑥𝐴𝐵)))
21 smfpimltxrmpt.x . . . . . 6 𝑥𝜑
22 eqid 2821 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
23 smfpimltxrmpt.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
2421, 22, 23dmmptdf 41508 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
25 nfcv 2977 . . . . . 6 𝑥𝐴
262, 25rabeqf 3481 . . . . 5 (dom (𝑥𝐴𝐵) = 𝐴 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
2724, 26syl 17 . . . 4 (𝜑 → {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
2822a1i 11 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
2928, 23fvmpt2d 6781 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
3029breq1d 5076 . . . . 5 ((𝜑𝑥𝐴) → (((𝑥𝐴𝐵)‘𝑥) < 𝑅𝐵 < 𝑅))
3121, 30rabbida 3474 . . . 4 (𝜑 → {𝑥𝐴 ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} = {𝑥𝐴𝐵 < 𝑅})
32 eqidd 2822 . . . 4 (𝜑 → {𝑥𝐴𝐵 < 𝑅} = {𝑥𝐴𝐵 < 𝑅})
3327, 31, 323eqtrrd 2861 . . 3 (𝜑 → {𝑥𝐴𝐵 < 𝑅} = {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅})
3424eqcomd 2827 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
3534oveq2d 7172 . . 3 (𝜑 → (𝑆t 𝐴) = (𝑆t dom (𝑥𝐴𝐵)))
3633, 35eleq12d 2907 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴) ↔ {𝑥 ∈ dom (𝑥𝐴𝐵) ∣ ((𝑥𝐴𝐵)‘𝑥) < 𝑅} ∈ (𝑆t dom (𝑥𝐴𝐵))))
3720, 36mpbird 259 1 (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wnf 1784  wcel 2114  {crab 3142   class class class wbr 5066  cmpt 5146  dom cdm 5555  cfv 6355  (class class class)co 7156  *cxr 10674   < clt 10675  t crest 16694  SAlgcsalg 42613  SMblFncsmblfn 42997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-acn 9371  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-ioo 12743  df-ico 12745  df-rest 16696  df-salg 42614  df-smblfn 42998
This theorem is referenced by:  smfpimioompt  43081
  Copyright terms: Public domain W3C validator