MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumrb Structured version   Visualization version   GIF version

Theorem sumrb 14393
Description: Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 9-Apr-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
sumrb.4 (𝜑𝑀 ∈ ℤ)
sumrb.5 (𝜑𝑁 ∈ ℤ)
sumrb.6 (𝜑𝐴 ⊆ (ℤ𝑀))
sumrb.7 (𝜑𝐴 ⊆ (ℤ𝑁))
Assertion
Ref Expression
sumrb (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem sumrb
StepHypRef Expression
1 sumrb.5 . . . . 5 (𝜑𝑁 ∈ ℤ)
21adantr 481 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℤ)
3 seqex 12759 . . . 4 seq𝑀( + , 𝐹) ∈ V
4 climres 14256 . . . 4 ((𝑁 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ V) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
52, 3, 4sylancl 693 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
6 sumrb.7 . . . . 5 (𝜑𝐴 ⊆ (ℤ𝑁))
7 summo.1 . . . . . 6 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
8 summo.2 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
98adantlr 750 . . . . . 6 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
10 simpr 477 . . . . . 6 ((𝜑𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ (ℤ𝑀))
117, 9, 10sumrblem 14391 . . . . 5 (((𝜑𝑁 ∈ (ℤ𝑀)) ∧ 𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
126, 11mpidan 703 . . . 4 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
1312breq1d 4633 . . 3 ((𝜑𝑁 ∈ (ℤ𝑀)) → ((seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
145, 13bitr3d 270 . 2 ((𝜑𝑁 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
15 sumrb.6 . . . . 5 (𝜑𝐴 ⊆ (ℤ𝑀))
168adantlr 750 . . . . . 6 (((𝜑𝑀 ∈ (ℤ𝑁)) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
17 simpr 477 . . . . . 6 ((𝜑𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ (ℤ𝑁))
187, 16, 17sumrblem 14391 . . . . 5 (((𝜑𝑀 ∈ (ℤ𝑁)) ∧ 𝐴 ⊆ (ℤ𝑀)) → (seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) = seq𝑀( + , 𝐹))
1915, 18mpidan 703 . . . 4 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) = seq𝑀( + , 𝐹))
2019breq1d 4633 . . 3 ((𝜑𝑀 ∈ (ℤ𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑀( + , 𝐹) ⇝ 𝐶))
21 sumrb.4 . . . . 5 (𝜑𝑀 ∈ ℤ)
2221adantr 481 . . . 4 ((𝜑𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
23 seqex 12759 . . . 4 seq𝑁( + , 𝐹) ∈ V
24 climres 14256 . . . 4 ((𝑀 ∈ ℤ ∧ seq𝑁( + , 𝐹) ∈ V) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
2522, 23, 24sylancl 693 . . 3 ((𝜑𝑀 ∈ (ℤ𝑁)) → ((seq𝑁( + , 𝐹) ↾ (ℤ𝑀)) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
2620, 25bitr3d 270 . 2 ((𝜑𝑀 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
27 uztric 11669 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
2821, 1, 27syl2anc 692 . 2 (𝜑 → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
2914, 26, 28mpjaodan 826 1 (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  Vcvv 3190  wss 3560  ifcif 4064   class class class wbr 4623  cmpt 4683  cres 5086  cfv 5857  cc 9894  0cc0 9896   + caddc 9899  cz 11337  cuz 11647  seqcseq 12757  cli 14165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-seq 12758  df-clim 14169
This theorem is referenced by:  summo  14397  zsum  14398
  Copyright terms: Public domain W3C validator