MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcvg Structured version   Visualization version   GIF version

Theorem fsumcvg 14236
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
sumrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
fsumcvg.4 (𝜑𝐴 ⊆ (𝑀...𝑁))
Assertion
Ref Expression
fsumcvg (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumcvg
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2609 . 2 (ℤ𝑁) = (ℤ𝑁)
2 sumrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
3 eluzelz 11529 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
42, 3syl 17 . 2 (𝜑𝑁 ∈ ℤ)
5 seqex 12620 . . 3 seq𝑀( + , 𝐹) ∈ V
65a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐹) ∈ V)
7 eqid 2609 . . . 4 (ℤ𝑀) = (ℤ𝑀)
8 eluzel2 11524 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
92, 8syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
10 eluzelz 11529 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
11 iftrue 4041 . . . . . . . . . 10 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
1211adantl 480 . . . . . . . . 9 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
13 summo.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1412, 13eqeltrd 2687 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1514ex 448 . . . . . . 7 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
16 iffalse 4044 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
17 0cn 9888 . . . . . . . 8 0 ∈ ℂ
1816, 17syl6eqel 2695 . . . . . . 7 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1915, 18pm2.61d1 169 . . . . . 6 (𝜑 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
20 summo.1 . . . . . . 7 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
2120fvmpt2 6185 . . . . . 6 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
2210, 19, 21syl2anr 493 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
2319adantr 479 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
2422, 23eqeltrd 2687 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
257, 9, 24serf 12646 . . 3 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶ℂ)
2625, 2ffvelrnd 6253 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ)
27 addid1 10067 . . . . 5 (𝑚 ∈ ℂ → (𝑚 + 0) = 𝑚)
2827adantl 480 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ℂ) → (𝑚 + 0) = 𝑚)
292adantr 479 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
30 simpr 475 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛 ∈ (ℤ𝑁))
3126adantr 479 . . . 4 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ)
32 elfzuz 12164 . . . . . 6 (𝑚 ∈ ((𝑁 + 1)...𝑛) → 𝑚 ∈ (ℤ‘(𝑁 + 1)))
33 eluzelz 11529 . . . . . . . . 9 (𝑚 ∈ (ℤ‘(𝑁 + 1)) → 𝑚 ∈ ℤ)
3433adantl 480 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ ℤ)
35 fsumcvg.4 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (𝑀...𝑁))
3635sseld 3566 . . . . . . . . . . 11 (𝜑 → (𝑚𝐴𝑚 ∈ (𝑀...𝑁)))
37 fznuz 12246 . . . . . . . . . . 11 (𝑚 ∈ (𝑀...𝑁) → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1)))
3836, 37syl6 34 . . . . . . . . . 10 (𝜑 → (𝑚𝐴 → ¬ 𝑚 ∈ (ℤ‘(𝑁 + 1))))
3938con2d 127 . . . . . . . . 9 (𝜑 → (𝑚 ∈ (ℤ‘(𝑁 + 1)) → ¬ 𝑚𝐴))
4039imp 443 . . . . . . . 8 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → ¬ 𝑚𝐴)
4134, 40eldifd 3550 . . . . . . 7 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → 𝑚 ∈ (ℤ ∖ 𝐴))
42 fveq2 6088 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
4342eqeq1d 2611 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) = 0 ↔ (𝐹𝑚) = 0))
44 eldifi 3693 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ)
45 eldifn 3694 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘𝐴)
4645, 16syl 17 . . . . . . . . . . 11 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) = 0)
4746, 17syl6eqel 2695 . . . . . . . . . 10 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
4844, 47, 21syl2anc 690 . . . . . . . . 9 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4948, 46eqtrd 2643 . . . . . . . 8 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = 0)
5043, 49vtoclga 3244 . . . . . . 7 (𝑚 ∈ (ℤ ∖ 𝐴) → (𝐹𝑚) = 0)
5141, 50syl 17 . . . . . 6 ((𝜑𝑚 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑚) = 0)
5232, 51sylan2 489 . . . . 5 ((𝜑𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 0)
5352adantlr 746 . . . 4 (((𝜑𝑛 ∈ (ℤ𝑁)) ∧ 𝑚 ∈ ((𝑁 + 1)...𝑛)) → (𝐹𝑚) = 0)
5428, 29, 30, 31, 53seqid2 12664 . . 3 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐹)‘𝑛))
5554eqcomd 2615 . 2 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝑀( + , 𝐹)‘𝑁))
561, 4, 6, 26, 55climconst 14068 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wcel 1976  Vcvv 3172  cdif 3536  wss 3539  ifcif 4035   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cc 9790  0cc0 9792  1c1 9793   + caddc 9795  cz 11210  cuz 11519  ...cfz 12152  seqcseq 12618  cli 14009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-fz 12153  df-seq 12619  df-exp 12678  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013
This theorem is referenced by:  summolem2a  14239  fsumcvg2  14251
  Copyright terms: Public domain W3C validator