MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symggen2 Structured version   Visualization version   GIF version

Theorem symggen2 18599
Description: A finite permutation group is generated by the transpositions, see also Theorem 3.4 in [Rotman] p. 31. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
symgtrf.t 𝑇 = ran (pmTrsp‘𝐷)
symgtrf.g 𝐺 = (SymGrp‘𝐷)
symgtrf.b 𝐵 = (Base‘𝐺)
symggen.k 𝐾 = (mrCls‘(SubMnd‘𝐺))
Assertion
Ref Expression
symggen2 (𝐷 ∈ Fin → (𝐾𝑇) = 𝐵)

Proof of Theorem symggen2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 symgtrf.t . . 3 𝑇 = ran (pmTrsp‘𝐷)
2 symgtrf.g . . 3 𝐺 = (SymGrp‘𝐷)
3 symgtrf.b . . 3 𝐵 = (Base‘𝐺)
4 symggen.k . . 3 𝐾 = (mrCls‘(SubMnd‘𝐺))
51, 2, 3, 4symggen 18598 . 2 (𝐷 ∈ Fin → (𝐾𝑇) = {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
6 difss 4108 . . . . . . 7 (𝑥 ∖ I ) ⊆ 𝑥
7 dmss 5771 . . . . . . 7 ((𝑥 ∖ I ) ⊆ 𝑥 → dom (𝑥 ∖ I ) ⊆ dom 𝑥)
86, 7ax-mp 5 . . . . . 6 dom (𝑥 ∖ I ) ⊆ dom 𝑥
92, 3symgbasf1o 18503 . . . . . . 7 (𝑥𝐵𝑥:𝐷1-1-onto𝐷)
10 f1odm 6619 . . . . . . 7 (𝑥:𝐷1-1-onto𝐷 → dom 𝑥 = 𝐷)
119, 10syl 17 . . . . . 6 (𝑥𝐵 → dom 𝑥 = 𝐷)
128, 11sseqtrid 4019 . . . . 5 (𝑥𝐵 → dom (𝑥 ∖ I ) ⊆ 𝐷)
13 ssfi 8738 . . . . 5 ((𝐷 ∈ Fin ∧ dom (𝑥 ∖ I ) ⊆ 𝐷) → dom (𝑥 ∖ I ) ∈ Fin)
1412, 13sylan2 594 . . . 4 ((𝐷 ∈ Fin ∧ 𝑥𝐵) → dom (𝑥 ∖ I ) ∈ Fin)
1514ralrimiva 3182 . . 3 (𝐷 ∈ Fin → ∀𝑥𝐵 dom (𝑥 ∖ I ) ∈ Fin)
16 rabid2 3381 . . 3 (𝐵 = {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ ∀𝑥𝐵 dom (𝑥 ∖ I ) ∈ Fin)
1715, 16sylibr 236 . 2 (𝐷 ∈ Fin → 𝐵 = {𝑥𝐵 ∣ dom (𝑥 ∖ I ) ∈ Fin})
185, 17eqtr4d 2859 1 (𝐷 ∈ Fin → (𝐾𝑇) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wral 3138  {crab 3142  cdif 3933  wss 3936   I cid 5459  dom cdm 5555  ran crn 5556  1-1-ontowf1o 6354  cfv 6355  Fincfn 8509  Basecbs 16483  mrClscmrc 16854  SubMndcsubmnd 17955  SymGrpcsymg 18495  pmTrspcpmtr 18569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-tset 16584  df-0g 16715  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-efmnd 18034  df-grp 18106  df-minusg 18107  df-subg 18276  df-symg 18496  df-pmtr 18570
This theorem is referenced by:  psgnfitr  18645  mdetunilem7  21227
  Copyright terms: Public domain W3C validator