![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlsegvdeg | Structured version Visualization version GIF version |
Description: Formerly part of proof of eupth2lem3 27380: If a trail in a graph 𝐺 induces a subgraph 𝑍 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk, and a subgraph 𝑋 with the vertices 𝑉 of 𝐺 and the edges being the edges of the walk except the last one, and a subgraph 𝑌 with the vertices 𝑉 of 𝐺 and one edges being the last edge of the walk, then the vertex degree of any vertex 𝑈 of 𝐺 within 𝑍 is the sum of the vertex degree of 𝑈 within 𝑋 and the vertex degree of 𝑈 within 𝑌. Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.) |
Ref | Expression |
---|---|
trlsegvdeg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlsegvdeg.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlsegvdeg.f | ⊢ (𝜑 → Fun 𝐼) |
trlsegvdeg.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) |
trlsegvdeg.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
trlsegvdeg.w | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlsegvdeg.vx | ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) |
trlsegvdeg.vy | ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) |
trlsegvdeg.vz | ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) |
trlsegvdeg.ix | ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
trlsegvdeg.iy | ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) |
trlsegvdeg.iz | ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) |
Ref | Expression |
---|---|
trlsegvdeg | ⊢ (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2752 | . 2 ⊢ (iEdg‘𝑋) = (iEdg‘𝑋) | |
2 | eqid 2752 | . 2 ⊢ (iEdg‘𝑌) = (iEdg‘𝑌) | |
3 | eqid 2752 | . 2 ⊢ (Vtx‘𝑋) = (Vtx‘𝑋) | |
4 | trlsegvdeg.vy | . . 3 ⊢ (𝜑 → (Vtx‘𝑌) = 𝑉) | |
5 | trlsegvdeg.vx | . . 3 ⊢ (𝜑 → (Vtx‘𝑋) = 𝑉) | |
6 | 4, 5 | eqtr4d 2789 | . 2 ⊢ (𝜑 → (Vtx‘𝑌) = (Vtx‘𝑋)) |
7 | trlsegvdeg.vz | . . 3 ⊢ (𝜑 → (Vtx‘𝑍) = 𝑉) | |
8 | 7, 5 | eqtr4d 2789 | . 2 ⊢ (𝜑 → (Vtx‘𝑍) = (Vtx‘𝑋)) |
9 | trlsegvdeg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
10 | trlsegvdeg.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
11 | trlsegvdeg.f | . . . . 5 ⊢ (𝜑 → Fun 𝐼) | |
12 | trlsegvdeg.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) | |
13 | trlsegvdeg.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
14 | trlsegvdeg.w | . . . . 5 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
15 | trlsegvdeg.ix | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | |
16 | trlsegvdeg.iy | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑌) = {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉}) | |
17 | trlsegvdeg.iz | . . . . 5 ⊢ (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁)))) | |
18 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem4 27367 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑋) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) |
19 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem5 27368 | . . . 4 ⊢ (𝜑 → dom (iEdg‘𝑌) = {(𝐹‘𝑁)}) |
20 | 18, 19 | ineq12d 3950 | . . 3 ⊢ (𝜑 → (dom (iEdg‘𝑋) ∩ dom (iEdg‘𝑌)) = (((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹‘𝑁)})) |
21 | fzonel 12669 | . . . . . . 7 ⊢ ¬ 𝑁 ∈ (0..^𝑁) | |
22 | 10 | trlf1 26797 | . . . . . . . . 9 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
23 | 14, 22 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) |
24 | elfzouz2 12670 | . . . . . . . . 9 ⊢ (𝑁 ∈ (0..^(♯‘𝐹)) → (♯‘𝐹) ∈ (ℤ≥‘𝑁)) | |
25 | fzoss2 12682 | . . . . . . . . 9 ⊢ ((♯‘𝐹) ∈ (ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) | |
26 | 12, 24, 25 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(♯‘𝐹))) |
27 | f1elima 6675 | . . . . . . . 8 ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑁 ∈ (0..^(♯‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(♯‘𝐹))) → ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ↔ 𝑁 ∈ (0..^𝑁))) | |
28 | 23, 12, 26, 27 | syl3anc 1473 | . . . . . . 7 ⊢ (𝜑 → ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ↔ 𝑁 ∈ (0..^𝑁))) |
29 | 21, 28 | mtbiri 316 | . . . . . 6 ⊢ (𝜑 → ¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁))) |
30 | 29 | orcd 406 | . . . . 5 ⊢ (𝜑 → (¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹‘𝑁) ∈ dom 𝐼)) |
31 | ianor 510 | . . . . . 6 ⊢ (¬ ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∧ (𝐹‘𝑁) ∈ dom 𝐼) ↔ (¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹‘𝑁) ∈ dom 𝐼)) | |
32 | elin 3931 | . . . . . 6 ⊢ ((𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ↔ ((𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∧ (𝐹‘𝑁) ∈ dom 𝐼)) | |
33 | 31, 32 | xchnxbir 322 | . . . . 5 ⊢ (¬ (𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ↔ (¬ (𝐹‘𝑁) ∈ (𝐹 “ (0..^𝑁)) ∨ ¬ (𝐹‘𝑁) ∈ dom 𝐼)) |
34 | 30, 33 | sylibr 224 | . . . 4 ⊢ (𝜑 → ¬ (𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) |
35 | disjsn 4382 | . . . 4 ⊢ ((((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹‘𝑁)}) = ∅ ↔ ¬ (𝐹‘𝑁) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)) | |
36 | 34, 35 | sylibr 224 | . . 3 ⊢ (𝜑 → (((𝐹 “ (0..^𝑁)) ∩ dom 𝐼) ∩ {(𝐹‘𝑁)}) = ∅) |
37 | 20, 36 | eqtrd 2786 | . 2 ⊢ (𝜑 → (dom (iEdg‘𝑋) ∩ dom (iEdg‘𝑌)) = ∅) |
38 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem2 27365 | . 2 ⊢ (𝜑 → Fun (iEdg‘𝑋)) |
39 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem3 27366 | . 2 ⊢ (𝜑 → Fun (iEdg‘𝑌)) |
40 | 13, 5 | eleqtrrd 2834 | . 2 ⊢ (𝜑 → 𝑈 ∈ (Vtx‘𝑋)) |
41 | f1f 6254 | . . . . 5 ⊢ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) | |
42 | 14, 22, 41 | 3syl 18 | . . . 4 ⊢ (𝜑 → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐼) |
43 | 11, 42, 12 | resunimafz0 13413 | . . 3 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
44 | 15, 16 | uneq12d 3903 | . . 3 ⊢ (𝜑 → ((iEdg‘𝑋) ∪ (iEdg‘𝑌)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {〈(𝐹‘𝑁), (𝐼‘(𝐹‘𝑁))〉})) |
45 | 43, 17, 44 | 3eqtr4d 2796 | . 2 ⊢ (𝜑 → (iEdg‘𝑍) = ((iEdg‘𝑋) ∪ (iEdg‘𝑌))) |
46 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem6 27369 | . 2 ⊢ (𝜑 → dom (iEdg‘𝑋) ∈ Fin) |
47 | 9, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17 | trlsegvdeglem7 27370 | . 2 ⊢ (𝜑 → dom (iEdg‘𝑌) ∈ Fin) |
48 | 1, 2, 3, 6, 8, 37, 38, 39, 40, 45, 46, 47 | vtxdfiun 26580 | 1 ⊢ (𝜑 → ((VtxDeg‘𝑍)‘𝑈) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∪ cun 3705 ∩ cin 3706 ⊆ wss 3707 ∅c0 4050 {csn 4313 〈cop 4319 class class class wbr 4796 dom cdm 5258 ↾ cres 5260 “ cima 5261 Fun wfun 6035 ⟶wf 6037 –1-1→wf1 6038 ‘cfv 6041 (class class class)co 6805 0cc0 10120 + caddc 10123 ℤ≥cuz 11871 ...cfz 12511 ..^cfzo 12651 ♯chash 13303 Vtxcvtx 26065 iEdgciedg 26066 VtxDegcvtxdg 26563 Trailsctrls 26789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1051 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-map 8017 df-pm 8018 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8947 df-cda 9174 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-n0 11477 df-xnn0 11548 df-z 11562 df-uz 11872 df-xadd 12132 df-fz 12512 df-fzo 12652 df-hash 13304 df-word 13477 df-vtxdg 26564 df-wlks 26697 df-trls 26791 |
This theorem is referenced by: eupth2lem3lem7 27378 |
Copyright terms: Public domain | W3C validator |