MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzoss2 Structured version   Visualization version   GIF version

Theorem fzoss2 13066
Description: Subset relationship for half-open sequences of integers. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
fzoss2 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁))

Proof of Theorem fzoss2
StepHypRef Expression
1 eluzel2 12249 . . . . 5 (𝑁 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
2 peano2zm 12026 . . . . 5 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
31, 2syl 17 . . . 4 (𝑁 ∈ (ℤ𝐾) → (𝐾 − 1) ∈ ℤ)
4 1zzd 12014 . . . 4 (𝑁 ∈ (ℤ𝐾) → 1 ∈ ℤ)
5 id 22 . . . . 5 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (ℤ𝐾))
61zcnd 12089 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → 𝐾 ∈ ℂ)
7 ax-1cn 10595 . . . . . . 7 1 ∈ ℂ
8 npcan 10895 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
96, 7, 8sylancl 588 . . . . . 6 (𝑁 ∈ (ℤ𝐾) → ((𝐾 − 1) + 1) = 𝐾)
109fveq2d 6674 . . . . 5 (𝑁 ∈ (ℤ𝐾) → (ℤ‘((𝐾 − 1) + 1)) = (ℤ𝐾))
115, 10eleqtrrd 2916 . . . 4 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1)))
12 eluzsub 12275 . . . 4 (((𝐾 − 1) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘((𝐾 − 1) + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝐾 − 1)))
133, 4, 11, 12syl3anc 1367 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝑁 − 1) ∈ (ℤ‘(𝐾 − 1)))
14 fzss2 12948 . . 3 ((𝑁 − 1) ∈ (ℤ‘(𝐾 − 1)) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1)))
1513, 14syl 17 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...(𝑁 − 1)))
16 fzoval 13040 . . 3 (𝐾 ∈ ℤ → (𝑀..^𝐾) = (𝑀...(𝐾 − 1)))
171, 16syl 17 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝐾) = (𝑀...(𝐾 − 1)))
18 eluzelz 12254 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ ℤ)
19 fzoval 13040 . . 3 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
2018, 19syl 17 . 2 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
2115, 17, 203sstr4d 4014 1 (𝑁 ∈ (ℤ𝐾) → (𝑀..^𝐾) ⊆ (𝑀..^𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wss 3936  cfv 6355  (class class class)co 7156  cc 10535  1c1 10538   + caddc 10540  cmin 10870  cz 11982  cuz 12244  ...cfz 12893  ..^cfzo 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035
This theorem is referenced by:  fzossrbm1  13067  fzosplit  13071  elfzoext  13095  fzossfzop1  13116  uzindi  13351  ccatass  13942  ccatrn  13943  ccatalpha  13947  swrdval2  14008  pfxres  14041  pfxf  14042  pfxccat1  14064  pfxccatin12lem2a  14089  splfv1  14117  revccat  14128  repswpfx  14147  psgnunilem5  18622  efgsp1  18863  efgsres  18864  wlkres  27452  trlreslem  27481  crctcshwlkn0lem4  27591  wwlksm1edg  27659  wwlksnred  27670  clwwlkccatlem  27767  clwlkclwwlklem2fv1  27773  clwlkclwwlklem2  27778  clwwisshclwwslem  27792  clwwlkinwwlk  27818  clwwlkf  27826  wwlksubclwwlk  27837  trlsegvdeg  28006  iundisjfi  30519  fz1nntr  30527  wrdres  30613  pfxf1  30618  swrdrn2  30628  swrdrn3  30629  swrdf1  30630  swrdrndisj  30631  cycpmco2rn  30767  cycpmco2lem6  30773  cycpmco2lem7  30774  cycpmconjslem2  30797  measiuns  31476  signstfvp  31841  signstfvc  31844  signstres  31845  signsvfn  31852  prodfzo03  31874  breprexplemc  31903  pfxwlk  32370  iccpartres  43598  iccpartigtl  43603  iccelpart  43613
  Copyright terms: Public domain W3C validator