Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsp2cyc Structured version   Visualization version   GIF version

Theorem trsp2cyc 30784
Description: Exhibit the word a transposition corresponds to, as a cycle. (Contributed by Thierry Arnoux, 25-Sep-2023.)
Hypotheses
Ref Expression
trsp2cyc.t 𝑇 = ran (pmTrsp‘𝐷)
trsp2cyc.c 𝐶 = (toCyc‘𝐷)
Assertion
Ref Expression
trsp2cyc ((𝐷𝑉𝑃𝑇) → ∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
Distinct variable groups:   𝐷,𝑖,𝑗   𝑃,𝑖,𝑗   𝑇,𝑖,𝑗   𝑖,𝑉,𝑗
Allowed substitution hints:   𝐶(𝑖,𝑗)

Proof of Theorem trsp2cyc
Dummy variables 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . . . . 7 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o})
2 breq1 5062 . . . . . . . 8 (𝑦 = 𝑝 → (𝑦 ≈ 2o𝑝 ≈ 2o))
32elrab 3676 . . . . . . 7 (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↔ (𝑝 ∈ 𝒫 𝐷𝑝 ≈ 2o))
41, 3sylib 220 . . . . . 6 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → (𝑝 ∈ 𝒫 𝐷𝑝 ≈ 2o))
54simprd 498 . . . . 5 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝 ≈ 2o)
6 en2 8747 . . . . 5 (𝑝 ≈ 2o → ∃𝑖𝑗 𝑝 = {𝑖, 𝑗})
75, 6syl 17 . . . 4 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ∃𝑖𝑗 𝑝 = {𝑖, 𝑗})
84simpld 497 . . . . . . . . . 10 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝 ∈ 𝒫 𝐷)
98elpwid 4543 . . . . . . . . 9 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → 𝑝𝐷)
109adantr 483 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝𝐷)
11 vex 3494 . . . . . . . . . 10 𝑖 ∈ V
1211prid1 4691 . . . . . . . . 9 𝑖 ∈ {𝑖, 𝑗}
13 simpr 487 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝 = {𝑖, 𝑗})
1412, 13eleqtrrid 2919 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑖𝑝)
1510, 14sseldd 3961 . . . . . . 7 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑖𝐷)
16 vex 3494 . . . . . . . . . 10 𝑗 ∈ V
1716prid2 4692 . . . . . . . . 9 𝑗 ∈ {𝑖, 𝑗}
1817, 13eleqtrrid 2919 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑗𝑝)
1910, 18sseldd 3961 . . . . . . 7 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑗𝐷)
205adantr 483 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑝 ≈ 2o)
2113, 20eqbrtrrd 5083 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → {𝑖, 𝑗} ≈ 2o)
22 pr2ne 9424 . . . . . . . . . 10 ((𝑖𝐷𝑗𝐷) → ({𝑖, 𝑗} ≈ 2o𝑖𝑗))
2322biimpa 479 . . . . . . . . 9 (((𝑖𝐷𝑗𝐷) ∧ {𝑖, 𝑗} ≈ 2o) → 𝑖𝑗)
2415, 19, 21, 23syl21anc 835 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑖𝑗)
25 simplr 767 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
26 simp-4l 781 . . . . . . . . . . 11 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝐷𝑉)
27 eqid 2820 . . . . . . . . . . . 12 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
2827pmtrval 18572 . . . . . . . . . . 11 ((𝐷𝑉𝑝𝐷𝑝 ≈ 2o) → ((pmTrsp‘𝐷)‘𝑝) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
2926, 10, 20, 28syl3anc 1366 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → ((pmTrsp‘𝐷)‘𝑝) = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
3013fveq2d 6667 . . . . . . . . . 10 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → ((pmTrsp‘𝐷)‘𝑝) = ((pmTrsp‘𝐷)‘{𝑖, 𝑗}))
3125, 29, 303eqtr2d 2861 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑃 = ((pmTrsp‘𝐷)‘{𝑖, 𝑗}))
32 trsp2cyc.c . . . . . . . . . 10 𝐶 = (toCyc‘𝐷)
3332, 26, 15, 19, 24, 27cycpm2tr 30780 . . . . . . . . 9 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → (𝐶‘⟨“𝑖𝑗”⟩) = ((pmTrsp‘𝐷)‘{𝑖, 𝑗}))
3431, 33eqtr4d 2858 . . . . . . . 8 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → 𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))
3524, 34jca 514 . . . . . . 7 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
3615, 19, 35jca31 517 . . . . . 6 (((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ∧ 𝑝 = {𝑖, 𝑗}) → ((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))))
3736ex 415 . . . . 5 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → (𝑝 = {𝑖, 𝑗} → ((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))))
38372eximdv 1919 . . . 4 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → (∃𝑖𝑗 𝑝 = {𝑖, 𝑗} → ∃𝑖𝑗((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))))
397, 38mpd 15 . . 3 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ∃𝑖𝑗((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))))
40 r2ex 3302 . . 3 (∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)) ↔ ∃𝑖𝑗((𝑖𝐷𝑗𝐷) ∧ (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩))))
4139, 40sylibr 236 . 2 ((((𝐷𝑉𝑃𝑇) ∧ 𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}) ∧ 𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
42 simpr 487 . . . 4 ((𝐷𝑉𝑃𝑇) → 𝑃𝑇)
43 trsp2cyc.t . . . . 5 𝑇 = ran (pmTrsp‘𝐷)
4427pmtrfval 18571 . . . . . . 7 (𝐷𝑉 → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4544adantr 483 . . . . . 6 ((𝐷𝑉𝑃𝑇) → (pmTrsp‘𝐷) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4645rneqd 5801 . . . . 5 ((𝐷𝑉𝑃𝑇) → ran (pmTrsp‘𝐷) = ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4743, 46syl5eq 2867 . . . 4 ((𝐷𝑉𝑃𝑇) → 𝑇 = ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
4842, 47eleqtrd 2914 . . 3 ((𝐷𝑉𝑃𝑇) → 𝑃 ∈ ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
49 eqid 2820 . . . . 5 (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5049elrnmpt 5821 . . . 4 (𝑃𝑇 → (𝑃 ∈ ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ↔ ∃𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
5150adantl 484 . . 3 ((𝐷𝑉𝑃𝑇) → (𝑃 ∈ ran (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) ↔ ∃𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
5248, 51mpbid 234 . 2 ((𝐷𝑉𝑃𝑇) → ∃𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o}𝑃 = (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5341, 52r19.29a 3288 1 ((𝐷𝑉𝑃𝑇) → ∃𝑖𝐷𝑗𝐷 (𝑖𝑗𝑃 = (𝐶‘⟨“𝑖𝑗”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wex 1779  wcel 2113  wne 3015  wrex 3138  {crab 3141  cdif 3926  wss 3929  ifcif 4460  𝒫 cpw 4532  {csn 4560  {cpr 4562   cuni 4831   class class class wbr 5059  cmpt 5139  ran crn 5549  cfv 6348  2oc2o 8089  cen 8499  ⟨“cs2 14196  pmTrspcpmtr 18562  toCycctocyc 30767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-sup 8899  df-inf 8900  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12890  df-fzo 13031  df-fl 13159  df-mod 13235  df-hash 13688  df-word 13859  df-concat 13916  df-s1 13943  df-substr 13996  df-pfx 14026  df-csh 14144  df-s2 14203  df-pmtr 18563  df-tocyc 30768
This theorem is referenced by:  cyc3genpm  30813
  Copyright terms: Public domain W3C validator