ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ncn Unicode version

Theorem 0ncn 7891
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7892 which is a related property. (Contributed by NM, 2-May-1996.)
Assertion
Ref Expression
0ncn  |-  -.  (/)  e.  CC

Proof of Theorem 0ncn
StepHypRef Expression
1 0nelxp 4687 . 2  |-  -.  (/)  e.  ( R.  X.  R. )
2 df-c 7878 . . 3  |-  CC  =  ( R.  X.  R. )
32eleq2i 2260 . 2  |-  ( (/)  e.  CC  <->  (/)  e.  ( R. 
X.  R. ) )
41, 3mtbir 672 1  |-  -.  (/)  e.  CC
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2164   (/)c0 3446    X. cxp 4657   R.cnr 7357   CCcc 7870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665  df-c 7878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator