ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ncn Unicode version

Theorem 0ncn 7844
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7845 which is a related property. (Contributed by NM, 2-May-1996.)
Assertion
Ref Expression
0ncn  |-  -.  (/)  e.  CC

Proof of Theorem 0ncn
StepHypRef Expression
1 0nelxp 4666 . 2  |-  -.  (/)  e.  ( R.  X.  R. )
2 df-c 7831 . . 3  |-  CC  =  ( R.  X.  R. )
32eleq2i 2254 . 2  |-  ( (/)  e.  CC  <->  (/)  e.  ( R. 
X.  R. ) )
41, 3mtbir 672 1  |-  -.  (/)  e.  CC
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2158   (/)c0 3434    X. cxp 4636   R.cnr 7310   CCcc 7823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-opab 4077  df-xp 4644  df-c 7831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator