ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ncn Unicode version

Theorem 0ncn 8018
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 8019 which is a related property. (Contributed by NM, 2-May-1996.)
Assertion
Ref Expression
0ncn  |-  -.  (/)  e.  CC

Proof of Theorem 0ncn
StepHypRef Expression
1 0nelxp 4747 . 2  |-  -.  (/)  e.  ( R.  X.  R. )
2 df-c 8005 . . 3  |-  CC  =  ( R.  X.  R. )
32eleq2i 2296 . 2  |-  ( (/)  e.  CC  <->  (/)  e.  ( R. 
X.  R. ) )
41, 3mtbir 675 1  |-  -.  (/)  e.  CC
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2200   (/)c0 3491    X. cxp 4717   R.cnr 7484   CCcc 7997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725  df-c 8005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator