ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ncn Unicode version

Theorem 0ncn 7979
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7980 which is a related property. (Contributed by NM, 2-May-1996.)
Assertion
Ref Expression
0ncn  |-  -.  (/)  e.  CC

Proof of Theorem 0ncn
StepHypRef Expression
1 0nelxp 4721 . 2  |-  -.  (/)  e.  ( R.  X.  R. )
2 df-c 7966 . . 3  |-  CC  =  ( R.  X.  R. )
32eleq2i 2274 . 2  |-  ( (/)  e.  CC  <->  (/)  e.  ( R. 
X.  R. ) )
41, 3mtbir 673 1  |-  -.  (/)  e.  CC
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2178   (/)c0 3468    X. cxp 4691   R.cnr 7445   CCcc 7958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-xp 4699  df-c 7966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator