| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0ncn | GIF version | ||
| Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7975 which is a related property. (Contributed by NM, 2-May-1996.) |
| Ref | Expression |
|---|---|
| 0ncn | ⊢ ¬ ∅ ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 4716 | . 2 ⊢ ¬ ∅ ∈ (R × R) | |
| 2 | df-c 7961 | . . 3 ⊢ ℂ = (R × R) | |
| 3 | 2 | eleq2i 2273 | . 2 ⊢ (∅ ∈ ℂ ↔ ∅ ∈ (R × R)) |
| 4 | 1, 3 | mtbir 673 | 1 ⊢ ¬ ∅ ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2177 ∅c0 3464 × cxp 4686 Rcnr 7440 ℂcc 7953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-opab 4117 df-xp 4694 df-c 7961 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |