![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0ncn | GIF version |
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7894 which is a related property. (Contributed by NM, 2-May-1996.) |
Ref | Expression |
---|---|
0ncn | ⊢ ¬ ∅ ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4688 | . 2 ⊢ ¬ ∅ ∈ (R × R) | |
2 | df-c 7880 | . . 3 ⊢ ℂ = (R × R) | |
3 | 2 | eleq2i 2260 | . 2 ⊢ (∅ ∈ ℂ ↔ ∅ ∈ (R × R)) |
4 | 1, 3 | mtbir 672 | 1 ⊢ ¬ ∅ ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2164 ∅c0 3447 × cxp 4658 Rcnr 7359 ℂcc 7872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-opab 4092 df-xp 4666 df-c 7880 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |