![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0ncn | GIF version |
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7830 which is a related property. (Contributed by NM, 2-May-1996.) |
Ref | Expression |
---|---|
0ncn | ⊢ ¬ ∅ ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelxp 4654 | . 2 ⊢ ¬ ∅ ∈ (R × R) | |
2 | df-c 7816 | . . 3 ⊢ ℂ = (R × R) | |
3 | 2 | eleq2i 2244 | . 2 ⊢ (∅ ∈ ℂ ↔ ∅ ∈ (R × R)) |
4 | 1, 3 | mtbir 671 | 1 ⊢ ¬ ∅ ∈ ℂ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2148 ∅c0 3422 × cxp 4624 Rcnr 7295 ℂcc 7808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-v 2739 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-opab 4065 df-xp 4632 df-c 7816 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |