| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0ncn | GIF version | ||
| Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7944 which is a related property. (Contributed by NM, 2-May-1996.) |
| Ref | Expression |
|---|---|
| 0ncn | ⊢ ¬ ∅ ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 4702 | . 2 ⊢ ¬ ∅ ∈ (R × R) | |
| 2 | df-c 7930 | . . 3 ⊢ ℂ = (R × R) | |
| 3 | 2 | eleq2i 2271 | . 2 ⊢ (∅ ∈ ℂ ↔ ∅ ∈ (R × R)) |
| 4 | 1, 3 | mtbir 672 | 1 ⊢ ¬ ∅ ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2175 ∅c0 3459 × cxp 4672 Rcnr 7409 ℂcc 7922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-xp 4680 df-c 7930 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |