ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0ncn GIF version

Theorem 0ncn 7793
Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7794 which is a related property. (Contributed by NM, 2-May-1996.)
Assertion
Ref Expression
0ncn ¬ ∅ ∈ ℂ

Proof of Theorem 0ncn
StepHypRef Expression
1 0nelxp 4639 . 2 ¬ ∅ ∈ (R × R)
2 df-c 7780 . . 3 ℂ = (R × R)
32eleq2i 2237 . 2 (∅ ∈ ℂ ↔ ∅ ∈ (R × R))
41, 3mtbir 666 1 ¬ ∅ ∈ ℂ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2141  c0 3414   × cxp 4609  Rcnr 7259  cc 7772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617  df-c 7780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator