ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elreal2 Unicode version

Theorem elreal2 7771
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
elreal2  |-  ( A  e.  RR  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )

Proof of Theorem elreal2
StepHypRef Expression
1 df-r 7763 . . 3  |-  RR  =  ( R.  X.  { 0R } )
21eleq2i 2233 . 2  |-  ( A  e.  RR  <->  A  e.  ( R.  X.  { 0R } ) )
3 xp1st 6133 . . . 4  |-  ( A  e.  ( R.  X.  { 0R } )  -> 
( 1st `  A
)  e.  R. )
4 1st2nd2 6143 . . . . 5  |-  ( A  e.  ( R.  X.  { 0R } )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
5 xp2nd 6134 . . . . . . 7  |-  ( A  e.  ( R.  X.  { 0R } )  -> 
( 2nd `  A
)  e.  { 0R } )
6 elsni 3594 . . . . . . 7  |-  ( ( 2nd `  A )  e.  { 0R }  ->  ( 2nd `  A
)  =  0R )
75, 6syl 14 . . . . . 6  |-  ( A  e.  ( R.  X.  { 0R } )  -> 
( 2nd `  A
)  =  0R )
87opeq2d 3765 . . . . 5  |-  ( A  e.  ( R.  X.  { 0R } )  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  A ) ,  0R >. )
94, 8eqtrd 2198 . . . 4  |-  ( A  e.  ( R.  X.  { 0R } )  ->  A  =  <. ( 1st `  A ) ,  0R >. )
103, 9jca 304 . . 3  |-  ( A  e.  ( R.  X.  { 0R } )  -> 
( ( 1st `  A
)  e.  R.  /\  A  =  <. ( 1st `  A ) ,  0R >. ) )
11 eleq1 2229 . . . . 5  |-  ( A  =  <. ( 1st `  A
) ,  0R >.  -> 
( A  e.  ( R.  X.  { 0R } )  <->  <. ( 1st `  A ) ,  0R >.  e.  ( R.  X.  { 0R } ) ) )
12 0r 7691 . . . . . . . 8  |-  0R  e.  R.
1312elexi 2738 . . . . . . 7  |-  0R  e.  _V
1413snid 3607 . . . . . 6  |-  0R  e.  { 0R }
15 opelxp 4634 . . . . . 6  |-  ( <.
( 1st `  A
) ,  0R >.  e.  ( R.  X.  { 0R } )  <->  ( ( 1st `  A )  e. 
R.  /\  0R  e.  { 0R } ) )
1614, 15mpbiran2 931 . . . . 5  |-  ( <.
( 1st `  A
) ,  0R >.  e.  ( R.  X.  { 0R } )  <->  ( 1st `  A )  e.  R. )
1711, 16bitrdi 195 . . . 4  |-  ( A  =  <. ( 1st `  A
) ,  0R >.  -> 
( A  e.  ( R.  X.  { 0R } )  <->  ( 1st `  A )  e.  R. ) )
1817biimparc 297 . . 3  |-  ( ( ( 1st `  A
)  e.  R.  /\  A  =  <. ( 1st `  A ) ,  0R >. )  ->  A  e.  ( R.  X.  { 0R } ) )
1910, 18impbii 125 . 2  |-  ( A  e.  ( R.  X.  { 0R } )  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )
202, 19bitri 183 1  |-  ( A  e.  RR  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   {csn 3576   <.cop 3579    X. cxp 4602   ` cfv 5188   1stc1st 6106   2ndc2nd 6107   R.cnr 7238   0Rc0r 7239   RRcr 7752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407  df-i1p 7408  df-enr 7667  df-nr 7668  df-0r 7672  df-r 7763
This theorem is referenced by:  ltresr2  7781  axrnegex  7820  axpre-suploclemres  7842
  Copyright terms: Public domain W3C validator