ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elreal2 Unicode version

Theorem elreal2 7762
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.)
Assertion
Ref Expression
elreal2  |-  ( A  e.  RR  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )

Proof of Theorem elreal2
StepHypRef Expression
1 df-r 7754 . . 3  |-  RR  =  ( R.  X.  { 0R } )
21eleq2i 2231 . 2  |-  ( A  e.  RR  <->  A  e.  ( R.  X.  { 0R } ) )
3 xp1st 6125 . . . 4  |-  ( A  e.  ( R.  X.  { 0R } )  -> 
( 1st `  A
)  e.  R. )
4 1st2nd2 6135 . . . . 5  |-  ( A  e.  ( R.  X.  { 0R } )  ->  A  =  <. ( 1st `  A ) ,  ( 2nd `  A )
>. )
5 xp2nd 6126 . . . . . . 7  |-  ( A  e.  ( R.  X.  { 0R } )  -> 
( 2nd `  A
)  e.  { 0R } )
6 elsni 3588 . . . . . . 7  |-  ( ( 2nd `  A )  e.  { 0R }  ->  ( 2nd `  A
)  =  0R )
75, 6syl 14 . . . . . 6  |-  ( A  e.  ( R.  X.  { 0R } )  -> 
( 2nd `  A
)  =  0R )
87opeq2d 3759 . . . . 5  |-  ( A  e.  ( R.  X.  { 0R } )  ->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. ( 1st `  A ) ,  0R >. )
94, 8eqtrd 2197 . . . 4  |-  ( A  e.  ( R.  X.  { 0R } )  ->  A  =  <. ( 1st `  A ) ,  0R >. )
103, 9jca 304 . . 3  |-  ( A  e.  ( R.  X.  { 0R } )  -> 
( ( 1st `  A
)  e.  R.  /\  A  =  <. ( 1st `  A ) ,  0R >. ) )
11 eleq1 2227 . . . . 5  |-  ( A  =  <. ( 1st `  A
) ,  0R >.  -> 
( A  e.  ( R.  X.  { 0R } )  <->  <. ( 1st `  A ) ,  0R >.  e.  ( R.  X.  { 0R } ) ) )
12 0r 7682 . . . . . . . 8  |-  0R  e.  R.
1312elexi 2733 . . . . . . 7  |-  0R  e.  _V
1413snid 3601 . . . . . 6  |-  0R  e.  { 0R }
15 opelxp 4628 . . . . . 6  |-  ( <.
( 1st `  A
) ,  0R >.  e.  ( R.  X.  { 0R } )  <->  ( ( 1st `  A )  e. 
R.  /\  0R  e.  { 0R } ) )
1614, 15mpbiran2 930 . . . . 5  |-  ( <.
( 1st `  A
) ,  0R >.  e.  ( R.  X.  { 0R } )  <->  ( 1st `  A )  e.  R. )
1711, 16bitrdi 195 . . . 4  |-  ( A  =  <. ( 1st `  A
) ,  0R >.  -> 
( A  e.  ( R.  X.  { 0R } )  <->  ( 1st `  A )  e.  R. ) )
1817biimparc 297 . . 3  |-  ( ( ( 1st `  A
)  e.  R.  /\  A  =  <. ( 1st `  A ) ,  0R >. )  ->  A  e.  ( R.  X.  { 0R } ) )
1910, 18impbii 125 . 2  |-  ( A  e.  ( R.  X.  { 0R } )  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )
202, 19bitri 183 1  |-  ( A  e.  RR  <->  ( ( 1st `  A )  e. 
R.  /\  A  =  <. ( 1st `  A
) ,  0R >. ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   {csn 3570   <.cop 3573    X. cxp 4596   ` cfv 5182   1stc1st 6098   2ndc2nd 6099   R.cnr 7229   0Rc0r 7230   RRcr 7743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285  df-inp 7398  df-i1p 7399  df-enr 7658  df-nr 7659  df-0r 7663  df-r 7754
This theorem is referenced by:  ltresr2  7772  axrnegex  7811  axpre-suploclemres  7833
  Copyright terms: Public domain W3C validator