Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elreal2 | Unicode version |
Description: Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) |
Ref | Expression |
---|---|
elreal2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 7763 | . . 3 | |
2 | 1 | eleq2i 2233 | . 2 |
3 | xp1st 6133 | . . . 4 | |
4 | 1st2nd2 6143 | . . . . 5 | |
5 | xp2nd 6134 | . . . . . . 7 | |
6 | elsni 3594 | . . . . . . 7 | |
7 | 5, 6 | syl 14 | . . . . . 6 |
8 | 7 | opeq2d 3765 | . . . . 5 |
9 | 4, 8 | eqtrd 2198 | . . . 4 |
10 | 3, 9 | jca 304 | . . 3 |
11 | eleq1 2229 | . . . . 5 | |
12 | 0r 7691 | . . . . . . . 8 | |
13 | 12 | elexi 2738 | . . . . . . 7 |
14 | 13 | snid 3607 | . . . . . 6 |
15 | opelxp 4634 | . . . . . 6 | |
16 | 14, 15 | mpbiran2 931 | . . . . 5 |
17 | 11, 16 | bitrdi 195 | . . . 4 |
18 | 17 | biimparc 297 | . . 3 |
19 | 10, 18 | impbii 125 | . 2 |
20 | 2, 19 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 csn 3576 cop 3579 cxp 4602 cfv 5188 c1st 6106 c2nd 6107 cnr 7238 c0r 7239 cr 7752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-inp 7407 df-i1p 7408 df-enr 7667 df-nr 7668 df-0r 7672 df-r 7763 |
This theorem is referenced by: ltresr2 7781 axrnegex 7820 axpre-suploclemres 7842 |
Copyright terms: Public domain | W3C validator |