ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelfun Unicode version

Theorem 0nelfun 5077
Description: A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.)
Assertion
Ref Expression
0nelfun  |-  ( Fun 
R  ->  (/)  e/  R
)

Proof of Theorem 0nelfun
StepHypRef Expression
1 funrel 5076 . 2  |-  ( Fun 
R  ->  Rel  R )
2 0nelrel 4523 . 2  |-  ( Rel 
R  ->  (/)  e/  R
)
31, 2syl 14 1  |-  ( Fun 
R  ->  (/)  e/  R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e/ wnel 2362   (/)c0 3310   Rel wrel 4482   Fun wfun 5053
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-opab 3930  df-xp 4483  df-rel 4484  df-fun 5061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator