ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nelfun Unicode version

Theorem 0nelfun 5336
Description: A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.)
Assertion
Ref Expression
0nelfun  |-  ( Fun 
R  ->  (/)  e/  R
)

Proof of Theorem 0nelfun
StepHypRef Expression
1 funrel 5335 . 2  |-  ( Fun 
R  ->  Rel  R )
2 0nelrel 4765 . 2  |-  ( Rel 
R  ->  (/)  e/  R
)
31, 2syl 14 1  |-  ( Fun 
R  ->  (/)  e/  R
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e/ wnel 2495   (/)c0 3491   Rel wrel 4724   Fun wfun 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725  df-rel 4726  df-fun 5320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator