| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funrel | Unicode version | ||
| Description: A function is a relation. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| funrel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 5319 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-fun 5319 |
| This theorem is referenced by: 0nelfun 5335 funeu 5342 nfunv 5350 funopg 5351 funssres 5359 funun 5361 fununfun 5363 fununi 5388 funcnvres2 5395 funimaexg 5404 fnrel 5418 fcoi1 5505 f1orel 5574 funbrfv 5669 funbrfv2b 5677 fvmptss2 5708 mptrcl 5716 elfvmptrab1 5728 funfvbrb 5747 fmptco 5800 funopsn 5816 funresdfunsnss 5841 elmpocl 6199 funexw 6255 mpoxopn0yelv 6383 tfrlem6 6460 funresdfunsndc 6650 pmresg 6821 fundmen 6957 caseinl 7254 caseinr 7255 axaddf 8051 axmulf 8052 hashinfom 10995 4sqlemffi 12914 structcnvcnv 13043 lidlmex 14433 istopon 14681 eltg4i 14723 eltg3 14725 tg1 14727 tg2 14728 tgclb 14733 lmrcl 14859 1vgrex 15815 edg0iedg0g 15860 umgrnloopv 15908 |
| Copyright terms: Public domain | W3C validator |