ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funrel Unicode version

Theorem funrel 5285
Description: A function is a relation. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
funrel  |-  ( Fun 
A  ->  Rel  A )

Proof of Theorem funrel
StepHypRef Expression
1 df-fun 5270 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
21simplbi 274 1  |-  ( Fun 
A  ->  Rel  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3165    _I cid 4333   `'ccnv 4672    o. ccom 4677   Rel wrel 4678   Fun wfun 5262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-fun 5270
This theorem is referenced by:  0nelfun  5286  funeu  5293  nfunv  5301  funopg  5302  funssres  5310  funun  5312  fununi  5336  funcnvres2  5343  funimaexg  5352  fnrel  5366  fcoi1  5450  f1orel  5519  funbrfv  5611  funbrfv2b  5617  fvmptss2  5648  mptrcl  5656  elfvmptrab1  5668  funfvbrb  5687  fmptco  5740  funresdfunsnss  5777  elmpocl  6131  funexw  6187  mpoxopn0yelv  6315  tfrlem6  6392  funresdfunsndc  6582  pmresg  6753  fundmen  6883  caseinl  7175  caseinr  7176  axaddf  7963  axmulf  7964  hashinfom  10904  4sqlemffi  12638  structcnvcnv  12767  lidlmex  14155  istopon  14403  eltg4i  14445  eltg3  14447  tg1  14449  tg2  14450  tgclb  14455  lmrcl  14581
  Copyright terms: Public domain W3C validator