| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nelfun | GIF version | ||
| Description: A function does not contain the empty set. (Contributed by BJ, 26-Nov-2021.) |
| Ref | Expression |
|---|---|
| 0nelfun | ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 5288 | . 2 ⊢ (Fun 𝑅 → Rel 𝑅) | |
| 2 | 0nelrel 4721 | . 2 ⊢ (Rel 𝑅 → ∅ ∉ 𝑅) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (Fun 𝑅 → ∅ ∉ 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∉ wnel 2471 ∅c0 3460 Rel wrel 4680 Fun wfun 5265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-xp 4681 df-rel 4682 df-fun 5273 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |