ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidaclem Unicode version

Theorem exmidaclem 7201
Description: Lemma for exmidac 7202. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
Hypotheses
Ref Expression
exmidaclem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }
exmidaclem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }
exmidaclem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
exmidaclem  |-  (CHOICE  -> EXMID )
Distinct variable groups:    x, A    x, B    x, y
Allowed substitution hints:    A( y)    B( y)    C( x, y)

Proof of Theorem exmidaclem
Dummy variables  z  f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  -> CHOICE
)
2 exmidaclem.c . . . . . 6  |-  C  =  { A ,  B }
3 exmidaclem.a . . . . . . . 8  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }
4 pp0ex 4186 . . . . . . . . 9  |-  { (/) ,  { (/) } }  e.  _V
54rabex 4144 . . . . . . . 8  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }  e.  _V
63, 5eqeltri 2250 . . . . . . 7  |-  A  e. 
_V
7 exmidaclem.b . . . . . . . 8  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }
84rabex 4144 . . . . . . . 8  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }  e.  _V
97, 8eqeltri 2250 . . . . . . 7  |-  B  e. 
_V
10 prexg 4208 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
116, 9, 10mp2an 426 . . . . . 6  |-  { A ,  B }  e.  _V
122, 11eqeltri 2250 . . . . 5  |-  C  e. 
_V
1312a1i 9 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  C  e.  _V )
14 simpr 110 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  z  e.  C )
1514, 2eleqtrdi 2270 . . . . . 6  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  z  e.  { A ,  B } )
16 elpri 3614 . . . . . 6  |-  ( z  e.  { A ,  B }  ->  ( z  =  A  \/  z  =  B ) )
17 0ex 4127 . . . . . . . . . . 11  |-  (/)  e.  _V
1817prid1 3697 . . . . . . . . . 10  |-  (/)  e.  { (/)
,  { (/) } }
19 eqid 2177 . . . . . . . . . . 11  |-  (/)  =  (/)
2019orci 731 . . . . . . . . . 10  |-  ( (/)  =  (/)  \/  y  =  { (/) } )
21 eqeq1 2184 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
2221orbi1d 791 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  y  =  { (/) } )  <->  ( (/)  =  (/)  \/  y  =  { (/) } ) ) )
2322, 3elrab2 2896 . . . . . . . . . 10  |-  ( (/)  e.  A  <->  ( (/)  e.  { (/)
,  { (/) } }  /\  ( (/)  =  (/)  \/  y  =  { (/) } ) ) )
2418, 20, 23mpbir2an 942 . . . . . . . . 9  |-  (/)  e.  A
25 eleq2 2241 . . . . . . . . 9  |-  ( z  =  A  ->  ( (/) 
e.  z  <->  (/)  e.  A
) )
2624, 25mpbiri 168 . . . . . . . 8  |-  ( z  =  A  ->  (/)  e.  z )
27 elex2 2753 . . . . . . . 8  |-  ( (/)  e.  z  ->  E. w  w  e.  z )
2826, 27syl 14 . . . . . . 7  |-  ( z  =  A  ->  E. w  w  e.  z )
29 p0ex 4185 . . . . . . . . . . 11  |-  { (/) }  e.  _V
3029prid2 3698 . . . . . . . . . 10  |-  { (/) }  e.  { (/) ,  { (/)
} }
31 eqid 2177 . . . . . . . . . . 11  |-  { (/) }  =  { (/) }
3231orci 731 . . . . . . . . . 10  |-  ( {
(/) }  =  { (/)
}  \/  y  =  { (/) } )
33 eqeq1 2184 . . . . . . . . . . . 12  |-  ( x  =  { (/) }  ->  ( x  =  { (/) }  <->  { (/) }  =  { (/)
} ) )
3433orbi1d 791 . . . . . . . . . . 11  |-  ( x  =  { (/) }  ->  ( ( x  =  { (/)
}  \/  y  =  { (/) } )  <->  ( { (/)
}  =  { (/) }  \/  y  =  { (/)
} ) ) )
3534, 7elrab2 2896 . . . . . . . . . 10  |-  ( {
(/) }  e.  B  <->  ( { (/) }  e.  { (/)
,  { (/) } }  /\  ( { (/) }  =  { (/) }  \/  y  =  { (/) } ) ) )
3630, 32, 35mpbir2an 942 . . . . . . . . 9  |-  { (/) }  e.  B
37 eleq2 2241 . . . . . . . . 9  |-  ( z  =  B  ->  ( { (/) }  e.  z  <->  { (/) }  e.  B
) )
3836, 37mpbiri 168 . . . . . . . 8  |-  ( z  =  B  ->  { (/) }  e.  z )
39 elex2 2753 . . . . . . . 8  |-  ( {
(/) }  e.  z  ->  E. w  w  e.  z )
4038, 39syl 14 . . . . . . 7  |-  ( z  =  B  ->  E. w  w  e.  z )
4128, 40jaoi 716 . . . . . 6  |-  ( ( z  =  A  \/  z  =  B )  ->  E. w  w  e.  z )
4215, 16, 413syl 17 . . . . 5  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  E. w  w  e.  z )
4342ralrimiva 2550 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  A. z  e.  C  E. w  w  e.  z )
441, 13, 43acfun 7200 . . 3  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  E. f ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )
45 0nep0 4162 . . . . . . . . . 10  |-  (/)  =/=  { (/)
}
4645neii 2349 . . . . . . . . 9  |-  -.  (/)  =  { (/)
}
47 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( f `  A
)  =  (/) )
48 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( f `  B
)  =  { (/) } )
4947, 48eqeq12d 2192 . . . . . . . . 9  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( ( f `  A )  =  ( f `  B )  <->  (/)  =  { (/) } ) )
5046, 49mtbiri 675 . . . . . . . 8  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  ->  -.  ( f `  A
)  =  ( f `
 B ) )
51 olc 711 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  ( x  =  (/)  \/  y  =  { (/) } ) )
5251ralrimivw 2551 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  A. x  e.  { (/) ,  { (/) } }  (
x  =  (/)  \/  y  =  { (/) } ) )
53 rabid2 2653 . . . . . . . . . . . 12  |-  ( {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }  <->  A. x  e.  { (/) ,  { (/) } }  ( x  =  (/)  \/  y  =  { (/)
} ) )
5452, 53sylibr 134 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) } )
5554, 3eqtr4di 2228 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  A )
56 olc 711 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  ( x  =  { (/) }  \/  y  =  { (/)
} ) )
5756ralrimivw 2551 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  A. x  e.  { (/) ,  { (/) } }  (
x  =  { (/) }  \/  y  =  { (/)
} ) )
58 rabid2 2653 . . . . . . . . . . . 12  |-  ( {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }  <->  A. x  e.  { (/) ,  { (/) } }  (
x  =  { (/) }  \/  y  =  { (/)
} ) )
5957, 58sylibr 134 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) } )
6059, 7eqtr4di 2228 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  B )
6155, 60eqtr3d 2212 . . . . . . . . 9  |-  ( y  =  { (/) }  ->  A  =  B )
6261fveq2d 5515 . . . . . . . 8  |-  ( y  =  { (/) }  ->  ( f `  A )  =  ( f `  B ) )
6350, 62nsyl 628 . . . . . . 7  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  ->  -.  y  =  { (/)
} )
6463olcd 734 . . . . . 6  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
65 simpr 110 . . . . . . 7  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
6665orcd 733 . . . . . 6  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  y  =  { (/) } )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
67 fveq2 5511 . . . . . . . . . . 11  |-  ( z  =  B  ->  (
f `  z )  =  ( f `  B ) )
68 id 19 . . . . . . . . . . 11  |-  ( z  =  B  ->  z  =  B )
6967, 68eleq12d 2248 . . . . . . . . . 10  |-  ( z  =  B  ->  (
( f `  z
)  e.  z  <->  ( f `  B )  e.  B
) )
70 simprr 531 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  A. z  e.  C  ( f `  z
)  e.  z )
719prid2 3698 . . . . . . . . . . . 12  |-  B  e. 
{ A ,  B }
7271, 2eleqtrri 2253 . . . . . . . . . . 11  |-  B  e.  C
7372a1i 9 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  B  e.  C )
7469, 70, 73rspcdva 2846 . . . . . . . . 9  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( f `  B
)  e.  B )
75 eqeq1 2184 . . . . . . . . . . 11  |-  ( x  =  ( f `  B )  ->  (
x  =  { (/) }  <-> 
( f `  B
)  =  { (/) } ) )
7675orbi1d 791 . . . . . . . . . 10  |-  ( x  =  ( f `  B )  ->  (
( x  =  { (/)
}  \/  y  =  { (/) } )  <->  ( (
f `  B )  =  { (/) }  \/  y  =  { (/) } ) ) )
7776, 7elrab2 2896 . . . . . . . . 9  |-  ( ( f `  B )  e.  B  <->  ( (
f `  B )  e.  { (/) ,  { (/) } }  /\  ( ( f `  B )  =  { (/) }  \/  y  =  { (/) } ) ) )
7874, 77sylib 122 . . . . . . . 8  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  B )  e.  { (/)
,  { (/) } }  /\  ( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) ) )
7978simprd 114 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) )
8079adantr 276 . . . . . 6  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> 
( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) )
8164, 66, 80mpjaodan 798 . . . . 5  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
82 df-dc 835 . . . . 5  |-  (DECID  y  =  { (/) }  <->  ( y  =  { (/) }  \/  -.  y  =  { (/) } ) )
8381, 82sylibr 134 . . . 4  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> DECID  y  =  { (/) } )
84 simpr 110 . . . . . 6  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  ->  y  =  { (/)
} )
8584orcd 733 . . . . 5  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  ->  ( y  =  { (/) }  \/  -.  y  =  { (/) } ) )
8685, 82sylibr 134 . . . 4  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  -> DECID 
y  =  { (/) } )
87 fveq2 5511 . . . . . . . 8  |-  ( z  =  A  ->  (
f `  z )  =  ( f `  A ) )
88 id 19 . . . . . . . 8  |-  ( z  =  A  ->  z  =  A )
8987, 88eleq12d 2248 . . . . . . 7  |-  ( z  =  A  ->  (
( f `  z
)  e.  z  <->  ( f `  A )  e.  A
) )
906prid1 3697 . . . . . . . . 9  |-  A  e. 
{ A ,  B }
9190, 2eleqtrri 2253 . . . . . . . 8  |-  A  e.  C
9291a1i 9 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  A  e.  C )
9389, 70, 92rspcdva 2846 . . . . . 6  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( f `  A
)  e.  A )
94 eqeq1 2184 . . . . . . . 8  |-  ( x  =  ( f `  A )  ->  (
x  =  (/)  <->  ( f `  A )  =  (/) ) )
9594orbi1d 791 . . . . . . 7  |-  ( x  =  ( f `  A )  ->  (
( x  =  (/)  \/  y  =  { (/) } )  <->  ( ( f `
 A )  =  (/)  \/  y  =  { (/)
} ) ) )
9695, 3elrab2 2896 . . . . . 6  |-  ( ( f `  A )  e.  A  <->  ( (
f `  A )  e.  { (/) ,  { (/) } }  /\  ( ( f `  A )  =  (/)  \/  y  =  { (/) } ) ) )
9793, 96sylib 122 . . . . 5  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  A )  e.  { (/)
,  { (/) } }  /\  ( ( f `  A )  =  (/)  \/  y  =  { (/) } ) ) )
9897simprd 114 . . . 4  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  A )  =  (/)  \/  y  =  { (/) } ) )
9983, 86, 98mpjaodan 798 . . 3  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> DECID  y  =  { (/) } )
10044, 99exlimddv 1898 . 2  |-  ( (CHOICE  /\  y  C_  { (/) } )  -> DECID 
y  =  { (/) } )
101100exmid1dc 4197 1  |-  (CHOICE  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   {crab 2459   _Vcvv 2737    C_ wss 3129   (/)c0 3422   {csn 3591   {cpr 3592  EXMIDwem 4191    Fn wfn 5207   ` cfv 5212  CHOICEwac 7198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-exmid 4192  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ac 7199
This theorem is referenced by:  exmidac  7202
  Copyright terms: Public domain W3C validator