ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidaclem Unicode version

Theorem exmidaclem 7224
Description: Lemma for exmidac 7225. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
Hypotheses
Ref Expression
exmidaclem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }
exmidaclem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }
exmidaclem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
exmidaclem  |-  (CHOICE  -> EXMID )
Distinct variable groups:    x, A    x, B    x, y
Allowed substitution hints:    A( y)    B( y)    C( x, y)

Proof of Theorem exmidaclem
Dummy variables  z  f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  -> CHOICE
)
2 exmidaclem.c . . . . . 6  |-  C  =  { A ,  B }
3 exmidaclem.a . . . . . . . 8  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }
4 pp0ex 4203 . . . . . . . . 9  |-  { (/) ,  { (/) } }  e.  _V
54rabex 4161 . . . . . . . 8  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }  e.  _V
63, 5eqeltri 2261 . . . . . . 7  |-  A  e. 
_V
7 exmidaclem.b . . . . . . . 8  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }
84rabex 4161 . . . . . . . 8  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }  e.  _V
97, 8eqeltri 2261 . . . . . . 7  |-  B  e. 
_V
10 prexg 4225 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
116, 9, 10mp2an 426 . . . . . 6  |-  { A ,  B }  e.  _V
122, 11eqeltri 2261 . . . . 5  |-  C  e. 
_V
1312a1i 9 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  C  e.  _V )
14 simpr 110 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  z  e.  C )
1514, 2eleqtrdi 2281 . . . . . 6  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  z  e.  { A ,  B } )
16 elpri 3629 . . . . . 6  |-  ( z  e.  { A ,  B }  ->  ( z  =  A  \/  z  =  B ) )
17 0ex 4144 . . . . . . . . . . 11  |-  (/)  e.  _V
1817prid1 3712 . . . . . . . . . 10  |-  (/)  e.  { (/)
,  { (/) } }
19 eqid 2188 . . . . . . . . . . 11  |-  (/)  =  (/)
2019orci 732 . . . . . . . . . 10  |-  ( (/)  =  (/)  \/  y  =  { (/) } )
21 eqeq1 2195 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
2221orbi1d 792 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  y  =  { (/) } )  <->  ( (/)  =  (/)  \/  y  =  { (/) } ) ) )
2322, 3elrab2 2910 . . . . . . . . . 10  |-  ( (/)  e.  A  <->  ( (/)  e.  { (/)
,  { (/) } }  /\  ( (/)  =  (/)  \/  y  =  { (/) } ) ) )
2418, 20, 23mpbir2an 943 . . . . . . . . 9  |-  (/)  e.  A
25 eleq2 2252 . . . . . . . . 9  |-  ( z  =  A  ->  ( (/) 
e.  z  <->  (/)  e.  A
) )
2624, 25mpbiri 168 . . . . . . . 8  |-  ( z  =  A  ->  (/)  e.  z )
27 elex2 2767 . . . . . . . 8  |-  ( (/)  e.  z  ->  E. w  w  e.  z )
2826, 27syl 14 . . . . . . 7  |-  ( z  =  A  ->  E. w  w  e.  z )
29 p0ex 4202 . . . . . . . . . . 11  |-  { (/) }  e.  _V
3029prid2 3713 . . . . . . . . . 10  |-  { (/) }  e.  { (/) ,  { (/)
} }
31 eqid 2188 . . . . . . . . . . 11  |-  { (/) }  =  { (/) }
3231orci 732 . . . . . . . . . 10  |-  ( {
(/) }  =  { (/)
}  \/  y  =  { (/) } )
33 eqeq1 2195 . . . . . . . . . . . 12  |-  ( x  =  { (/) }  ->  ( x  =  { (/) }  <->  { (/) }  =  { (/)
} ) )
3433orbi1d 792 . . . . . . . . . . 11  |-  ( x  =  { (/) }  ->  ( ( x  =  { (/)
}  \/  y  =  { (/) } )  <->  ( { (/)
}  =  { (/) }  \/  y  =  { (/)
} ) ) )
3534, 7elrab2 2910 . . . . . . . . . 10  |-  ( {
(/) }  e.  B  <->  ( { (/) }  e.  { (/)
,  { (/) } }  /\  ( { (/) }  =  { (/) }  \/  y  =  { (/) } ) ) )
3630, 32, 35mpbir2an 943 . . . . . . . . 9  |-  { (/) }  e.  B
37 eleq2 2252 . . . . . . . . 9  |-  ( z  =  B  ->  ( { (/) }  e.  z  <->  { (/) }  e.  B
) )
3836, 37mpbiri 168 . . . . . . . 8  |-  ( z  =  B  ->  { (/) }  e.  z )
39 elex2 2767 . . . . . . . 8  |-  ( {
(/) }  e.  z  ->  E. w  w  e.  z )
4038, 39syl 14 . . . . . . 7  |-  ( z  =  B  ->  E. w  w  e.  z )
4128, 40jaoi 717 . . . . . 6  |-  ( ( z  =  A  \/  z  =  B )  ->  E. w  w  e.  z )
4215, 16, 413syl 17 . . . . 5  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  E. w  w  e.  z )
4342ralrimiva 2562 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  A. z  e.  C  E. w  w  e.  z )
441, 13, 43acfun 7223 . . 3  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  E. f ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )
45 0nep0 4179 . . . . . . . . . 10  |-  (/)  =/=  { (/)
}
4645neii 2361 . . . . . . . . 9  |-  -.  (/)  =  { (/)
}
47 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( f `  A
)  =  (/) )
48 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( f `  B
)  =  { (/) } )
4947, 48eqeq12d 2203 . . . . . . . . 9  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( ( f `  A )  =  ( f `  B )  <->  (/)  =  { (/) } ) )
5046, 49mtbiri 676 . . . . . . . 8  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  ->  -.  ( f `  A
)  =  ( f `
 B ) )
51 olc 712 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  ( x  =  (/)  \/  y  =  { (/) } ) )
5251ralrimivw 2563 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  A. x  e.  { (/) ,  { (/) } }  (
x  =  (/)  \/  y  =  { (/) } ) )
53 rabid2 2666 . . . . . . . . . . . 12  |-  ( {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }  <->  A. x  e.  { (/) ,  { (/) } }  ( x  =  (/)  \/  y  =  { (/)
} ) )
5452, 53sylibr 134 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) } )
5554, 3eqtr4di 2239 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  A )
56 olc 712 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  ( x  =  { (/) }  \/  y  =  { (/)
} ) )
5756ralrimivw 2563 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  A. x  e.  { (/) ,  { (/) } }  (
x  =  { (/) }  \/  y  =  { (/)
} ) )
58 rabid2 2666 . . . . . . . . . . . 12  |-  ( {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }  <->  A. x  e.  { (/) ,  { (/) } }  (
x  =  { (/) }  \/  y  =  { (/)
} ) )
5957, 58sylibr 134 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) } )
6059, 7eqtr4di 2239 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  B )
6155, 60eqtr3d 2223 . . . . . . . . 9  |-  ( y  =  { (/) }  ->  A  =  B )
6261fveq2d 5533 . . . . . . . 8  |-  ( y  =  { (/) }  ->  ( f `  A )  =  ( f `  B ) )
6350, 62nsyl 629 . . . . . . 7  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  ->  -.  y  =  { (/)
} )
6463olcd 735 . . . . . 6  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
65 simpr 110 . . . . . . 7  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
6665orcd 734 . . . . . 6  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  y  =  { (/) } )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
67 fveq2 5529 . . . . . . . . . . 11  |-  ( z  =  B  ->  (
f `  z )  =  ( f `  B ) )
68 id 19 . . . . . . . . . . 11  |-  ( z  =  B  ->  z  =  B )
6967, 68eleq12d 2259 . . . . . . . . . 10  |-  ( z  =  B  ->  (
( f `  z
)  e.  z  <->  ( f `  B )  e.  B
) )
70 simprr 531 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  A. z  e.  C  ( f `  z
)  e.  z )
719prid2 3713 . . . . . . . . . . . 12  |-  B  e. 
{ A ,  B }
7271, 2eleqtrri 2264 . . . . . . . . . . 11  |-  B  e.  C
7372a1i 9 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  B  e.  C )
7469, 70, 73rspcdva 2860 . . . . . . . . 9  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( f `  B
)  e.  B )
75 eqeq1 2195 . . . . . . . . . . 11  |-  ( x  =  ( f `  B )  ->  (
x  =  { (/) }  <-> 
( f `  B
)  =  { (/) } ) )
7675orbi1d 792 . . . . . . . . . 10  |-  ( x  =  ( f `  B )  ->  (
( x  =  { (/)
}  \/  y  =  { (/) } )  <->  ( (
f `  B )  =  { (/) }  \/  y  =  { (/) } ) ) )
7776, 7elrab2 2910 . . . . . . . . 9  |-  ( ( f `  B )  e.  B  <->  ( (
f `  B )  e.  { (/) ,  { (/) } }  /\  ( ( f `  B )  =  { (/) }  \/  y  =  { (/) } ) ) )
7874, 77sylib 122 . . . . . . . 8  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  B )  e.  { (/)
,  { (/) } }  /\  ( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) ) )
7978simprd 114 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) )
8079adantr 276 . . . . . 6  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> 
( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) )
8164, 66, 80mpjaodan 799 . . . . 5  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
82 df-dc 836 . . . . 5  |-  (DECID  y  =  { (/) }  <->  ( y  =  { (/) }  \/  -.  y  =  { (/) } ) )
8381, 82sylibr 134 . . . 4  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> DECID  y  =  { (/) } )
84 simpr 110 . . . . . 6  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  ->  y  =  { (/)
} )
8584orcd 734 . . . . 5  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  ->  ( y  =  { (/) }  \/  -.  y  =  { (/) } ) )
8685, 82sylibr 134 . . . 4  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  -> DECID 
y  =  { (/) } )
87 fveq2 5529 . . . . . . . 8  |-  ( z  =  A  ->  (
f `  z )  =  ( f `  A ) )
88 id 19 . . . . . . . 8  |-  ( z  =  A  ->  z  =  A )
8987, 88eleq12d 2259 . . . . . . 7  |-  ( z  =  A  ->  (
( f `  z
)  e.  z  <->  ( f `  A )  e.  A
) )
906prid1 3712 . . . . . . . . 9  |-  A  e. 
{ A ,  B }
9190, 2eleqtrri 2264 . . . . . . . 8  |-  A  e.  C
9291a1i 9 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  A  e.  C )
9389, 70, 92rspcdva 2860 . . . . . 6  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( f `  A
)  e.  A )
94 eqeq1 2195 . . . . . . . 8  |-  ( x  =  ( f `  A )  ->  (
x  =  (/)  <->  ( f `  A )  =  (/) ) )
9594orbi1d 792 . . . . . . 7  |-  ( x  =  ( f `  A )  ->  (
( x  =  (/)  \/  y  =  { (/) } )  <->  ( ( f `
 A )  =  (/)  \/  y  =  { (/)
} ) ) )
9695, 3elrab2 2910 . . . . . 6  |-  ( ( f `  A )  e.  A  <->  ( (
f `  A )  e.  { (/) ,  { (/) } }  /\  ( ( f `  A )  =  (/)  \/  y  =  { (/) } ) ) )
9793, 96sylib 122 . . . . 5  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  A )  e.  { (/)
,  { (/) } }  /\  ( ( f `  A )  =  (/)  \/  y  =  { (/) } ) ) )
9897simprd 114 . . . 4  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  A )  =  (/)  \/  y  =  { (/) } ) )
9983, 86, 98mpjaodan 799 . . 3  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> DECID  y  =  { (/) } )
10044, 99exlimddv 1909 . 2  |-  ( (CHOICE  /\  y  C_  { (/) } )  -> DECID 
y  =  { (/) } )
101100exmid1dc 4214 1  |-  (CHOICE  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1363   E.wex 1502    e. wcel 2159   A.wral 2467   {crab 2471   _Vcvv 2751    C_ wss 3143   (/)c0 3436   {csn 3606   {cpr 3607  EXMIDwem 4208    Fn wfn 5225   ` cfv 5230  CHOICEwac 7221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-exmid 4209  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-ac 7222
This theorem is referenced by:  exmidac  7225
  Copyright terms: Public domain W3C validator