Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidaclem | Unicode version |
Description: Lemma for exmidac 7165. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.) |
Ref | Expression |
---|---|
exmidaclem.a | |
exmidaclem.b | |
exmidaclem.c |
Ref | Expression |
---|---|
exmidaclem | CHOICE EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 CHOICE CHOICE | |
2 | exmidaclem.c | . . . . . 6 | |
3 | exmidaclem.a | . . . . . . . 8 | |
4 | pp0ex 4168 | . . . . . . . . 9 | |
5 | 4 | rabex 4126 | . . . . . . . 8 |
6 | 3, 5 | eqeltri 2239 | . . . . . . 7 |
7 | exmidaclem.b | . . . . . . . 8 | |
8 | 4 | rabex 4126 | . . . . . . . 8 |
9 | 7, 8 | eqeltri 2239 | . . . . . . 7 |
10 | prexg 4189 | . . . . . . 7 | |
11 | 6, 9, 10 | mp2an 423 | . . . . . 6 |
12 | 2, 11 | eqeltri 2239 | . . . . 5 |
13 | 12 | a1i 9 | . . . 4 CHOICE |
14 | simpr 109 | . . . . . . 7 CHOICE | |
15 | 14, 2 | eleqtrdi 2259 | . . . . . 6 CHOICE |
16 | elpri 3599 | . . . . . 6 | |
17 | 0ex 4109 | . . . . . . . . . . 11 | |
18 | 17 | prid1 3682 | . . . . . . . . . 10 |
19 | eqid 2165 | . . . . . . . . . . 11 | |
20 | 19 | orci 721 | . . . . . . . . . 10 |
21 | eqeq1 2172 | . . . . . . . . . . . 12 | |
22 | 21 | orbi1d 781 | . . . . . . . . . . 11 |
23 | 22, 3 | elrab2 2885 | . . . . . . . . . 10 |
24 | 18, 20, 23 | mpbir2an 932 | . . . . . . . . 9 |
25 | eleq2 2230 | . . . . . . . . 9 | |
26 | 24, 25 | mpbiri 167 | . . . . . . . 8 |
27 | elex2 2742 | . . . . . . . 8 | |
28 | 26, 27 | syl 14 | . . . . . . 7 |
29 | p0ex 4167 | . . . . . . . . . . 11 | |
30 | 29 | prid2 3683 | . . . . . . . . . 10 |
31 | eqid 2165 | . . . . . . . . . . 11 | |
32 | 31 | orci 721 | . . . . . . . . . 10 |
33 | eqeq1 2172 | . . . . . . . . . . . 12 | |
34 | 33 | orbi1d 781 | . . . . . . . . . . 11 |
35 | 34, 7 | elrab2 2885 | . . . . . . . . . 10 |
36 | 30, 32, 35 | mpbir2an 932 | . . . . . . . . 9 |
37 | eleq2 2230 | . . . . . . . . 9 | |
38 | 36, 37 | mpbiri 167 | . . . . . . . 8 |
39 | elex2 2742 | . . . . . . . 8 | |
40 | 38, 39 | syl 14 | . . . . . . 7 |
41 | 28, 40 | jaoi 706 | . . . . . 6 |
42 | 15, 16, 41 | 3syl 17 | . . . . 5 CHOICE |
43 | 42 | ralrimiva 2539 | . . . 4 CHOICE |
44 | 1, 13, 43 | acfun 7163 | . . 3 CHOICE |
45 | 0nep0 4144 | . . . . . . . . . 10 | |
46 | 45 | neii 2338 | . . . . . . . . 9 |
47 | simplr 520 | . . . . . . . . . 10 CHOICE | |
48 | simpr 109 | . . . . . . . . . 10 CHOICE | |
49 | 47, 48 | eqeq12d 2180 | . . . . . . . . 9 CHOICE |
50 | 46, 49 | mtbiri 665 | . . . . . . . 8 CHOICE |
51 | olc 701 | . . . . . . . . . . . . 13 | |
52 | 51 | ralrimivw 2540 | . . . . . . . . . . . 12 |
53 | rabid2 2642 | . . . . . . . . . . . 12 | |
54 | 52, 53 | sylibr 133 | . . . . . . . . . . 11 |
55 | 54, 3 | eqtr4di 2217 | . . . . . . . . . 10 |
56 | olc 701 | . . . . . . . . . . . . 13 | |
57 | 56 | ralrimivw 2540 | . . . . . . . . . . . 12 |
58 | rabid2 2642 | . . . . . . . . . . . 12 | |
59 | 57, 58 | sylibr 133 | . . . . . . . . . . 11 |
60 | 59, 7 | eqtr4di 2217 | . . . . . . . . . 10 |
61 | 55, 60 | eqtr3d 2200 | . . . . . . . . 9 |
62 | 61 | fveq2d 5490 | . . . . . . . 8 |
63 | 50, 62 | nsyl 618 | . . . . . . 7 CHOICE |
64 | 63 | olcd 724 | . . . . . 6 CHOICE |
65 | simpr 109 | . . . . . . 7 CHOICE | |
66 | 65 | orcd 723 | . . . . . 6 CHOICE |
67 | fveq2 5486 | . . . . . . . . . . 11 | |
68 | id 19 | . . . . . . . . . . 11 | |
69 | 67, 68 | eleq12d 2237 | . . . . . . . . . 10 |
70 | simprr 522 | . . . . . . . . . 10 CHOICE | |
71 | 9 | prid2 3683 | . . . . . . . . . . . 12 |
72 | 71, 2 | eleqtrri 2242 | . . . . . . . . . . 11 |
73 | 72 | a1i 9 | . . . . . . . . . 10 CHOICE |
74 | 69, 70, 73 | rspcdva 2835 | . . . . . . . . 9 CHOICE |
75 | eqeq1 2172 | . . . . . . . . . . 11 | |
76 | 75 | orbi1d 781 | . . . . . . . . . 10 |
77 | 76, 7 | elrab2 2885 | . . . . . . . . 9 |
78 | 74, 77 | sylib 121 | . . . . . . . 8 CHOICE |
79 | 78 | simprd 113 | . . . . . . 7 CHOICE |
80 | 79 | adantr 274 | . . . . . 6 CHOICE |
81 | 64, 66, 80 | mpjaodan 788 | . . . . 5 CHOICE |
82 | df-dc 825 | . . . . 5 DECID | |
83 | 81, 82 | sylibr 133 | . . . 4 CHOICE DECID |
84 | simpr 109 | . . . . . 6 CHOICE | |
85 | 84 | orcd 723 | . . . . 5 CHOICE |
86 | 85, 82 | sylibr 133 | . . . 4 CHOICE DECID |
87 | fveq2 5486 | . . . . . . . 8 | |
88 | id 19 | . . . . . . . 8 | |
89 | 87, 88 | eleq12d 2237 | . . . . . . 7 |
90 | 6 | prid1 3682 | . . . . . . . . 9 |
91 | 90, 2 | eleqtrri 2242 | . . . . . . . 8 |
92 | 91 | a1i 9 | . . . . . . 7 CHOICE |
93 | 89, 70, 92 | rspcdva 2835 | . . . . . 6 CHOICE |
94 | eqeq1 2172 | . . . . . . . 8 | |
95 | 94 | orbi1d 781 | . . . . . . 7 |
96 | 95, 3 | elrab2 2885 | . . . . . 6 |
97 | 93, 96 | sylib 121 | . . . . 5 CHOICE |
98 | 97 | simprd 113 | . . . 4 CHOICE |
99 | 83, 86, 98 | mpjaodan 788 | . . 3 CHOICE DECID |
100 | 44, 99 | exlimddv 1886 | . 2 CHOICE DECID |
101 | 100 | exmid1dc 4179 | 1 CHOICE EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 wceq 1343 wex 1480 wcel 2136 wral 2444 crab 2448 cvv 2726 wss 3116 c0 3409 csn 3576 cpr 3577 EXMIDwem 4173 wfn 5183 cfv 5188 CHOICEwac 7161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-exmid 4174 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ac 7162 |
This theorem is referenced by: exmidac 7165 |
Copyright terms: Public domain | W3C validator |