| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidaclem | Unicode version | ||
| Description: Lemma for exmidac 7352. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.) |
| Ref | Expression |
|---|---|
| exmidaclem.a |
|
| exmidaclem.b |
|
| exmidaclem.c |
|
| Ref | Expression |
|---|---|
| exmidaclem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | exmidaclem.c |
. . . . . 6
| |
| 3 | exmidaclem.a |
. . . . . . . 8
| |
| 4 | pp0ex 4249 |
. . . . . . . . 9
| |
| 5 | 4 | rabex 4204 |
. . . . . . . 8
|
| 6 | 3, 5 | eqeltri 2280 |
. . . . . . 7
|
| 7 | exmidaclem.b |
. . . . . . . 8
| |
| 8 | 4 | rabex 4204 |
. . . . . . . 8
|
| 9 | 7, 8 | eqeltri 2280 |
. . . . . . 7
|
| 10 | prexg 4271 |
. . . . . . 7
| |
| 11 | 6, 9, 10 | mp2an 426 |
. . . . . 6
|
| 12 | 2, 11 | eqeltri 2280 |
. . . . 5
|
| 13 | 12 | a1i 9 |
. . . 4
|
| 14 | simpr 110 |
. . . . . . 7
| |
| 15 | 14, 2 | eleqtrdi 2300 |
. . . . . 6
|
| 16 | elpri 3666 |
. . . . . 6
| |
| 17 | 0ex 4187 |
. . . . . . . . . . 11
| |
| 18 | 17 | prid1 3749 |
. . . . . . . . . 10
|
| 19 | eqid 2207 |
. . . . . . . . . . 11
| |
| 20 | 19 | orci 733 |
. . . . . . . . . 10
|
| 21 | eqeq1 2214 |
. . . . . . . . . . . 12
| |
| 22 | 21 | orbi1d 793 |
. . . . . . . . . . 11
|
| 23 | 22, 3 | elrab2 2939 |
. . . . . . . . . 10
|
| 24 | 18, 20, 23 | mpbir2an 945 |
. . . . . . . . 9
|
| 25 | eleq2 2271 |
. . . . . . . . 9
| |
| 26 | 24, 25 | mpbiri 168 |
. . . . . . . 8
|
| 27 | elex2 2793 |
. . . . . . . 8
| |
| 28 | 26, 27 | syl 14 |
. . . . . . 7
|
| 29 | p0ex 4248 |
. . . . . . . . . . 11
| |
| 30 | 29 | prid2 3750 |
. . . . . . . . . 10
|
| 31 | eqid 2207 |
. . . . . . . . . . 11
| |
| 32 | 31 | orci 733 |
. . . . . . . . . 10
|
| 33 | eqeq1 2214 |
. . . . . . . . . . . 12
| |
| 34 | 33 | orbi1d 793 |
. . . . . . . . . . 11
|
| 35 | 34, 7 | elrab2 2939 |
. . . . . . . . . 10
|
| 36 | 30, 32, 35 | mpbir2an 945 |
. . . . . . . . 9
|
| 37 | eleq2 2271 |
. . . . . . . . 9
| |
| 38 | 36, 37 | mpbiri 168 |
. . . . . . . 8
|
| 39 | elex2 2793 |
. . . . . . . 8
| |
| 40 | 38, 39 | syl 14 |
. . . . . . 7
|
| 41 | 28, 40 | jaoi 718 |
. . . . . 6
|
| 42 | 15, 16, 41 | 3syl 17 |
. . . . 5
|
| 43 | 42 | ralrimiva 2581 |
. . . 4
|
| 44 | 1, 13, 43 | acfun 7350 |
. . 3
|
| 45 | 0nep0 4225 |
. . . . . . . . . 10
| |
| 46 | 45 | neii 2380 |
. . . . . . . . 9
|
| 47 | simplr 528 |
. . . . . . . . . 10
| |
| 48 | simpr 110 |
. . . . . . . . . 10
| |
| 49 | 47, 48 | eqeq12d 2222 |
. . . . . . . . 9
|
| 50 | 46, 49 | mtbiri 677 |
. . . . . . . 8
|
| 51 | olc 713 |
. . . . . . . . . . . . 13
| |
| 52 | 51 | ralrimivw 2582 |
. . . . . . . . . . . 12
|
| 53 | rabid2 2685 |
. . . . . . . . . . . 12
| |
| 54 | 52, 53 | sylibr 134 |
. . . . . . . . . . 11
|
| 55 | 54, 3 | eqtr4di 2258 |
. . . . . . . . . 10
|
| 56 | olc 713 |
. . . . . . . . . . . . 13
| |
| 57 | 56 | ralrimivw 2582 |
. . . . . . . . . . . 12
|
| 58 | rabid2 2685 |
. . . . . . . . . . . 12
| |
| 59 | 57, 58 | sylibr 134 |
. . . . . . . . . . 11
|
| 60 | 59, 7 | eqtr4di 2258 |
. . . . . . . . . 10
|
| 61 | 55, 60 | eqtr3d 2242 |
. . . . . . . . 9
|
| 62 | 61 | fveq2d 5603 |
. . . . . . . 8
|
| 63 | 50, 62 | nsyl 629 |
. . . . . . 7
|
| 64 | 63 | olcd 736 |
. . . . . 6
|
| 65 | simpr 110 |
. . . . . . 7
| |
| 66 | 65 | orcd 735 |
. . . . . 6
|
| 67 | fveq2 5599 |
. . . . . . . . . . 11
| |
| 68 | id 19 |
. . . . . . . . . . 11
| |
| 69 | 67, 68 | eleq12d 2278 |
. . . . . . . . . 10
|
| 70 | simprr 531 |
. . . . . . . . . 10
| |
| 71 | 9 | prid2 3750 |
. . . . . . . . . . . 12
|
| 72 | 71, 2 | eleqtrri 2283 |
. . . . . . . . . . 11
|
| 73 | 72 | a1i 9 |
. . . . . . . . . 10
|
| 74 | 69, 70, 73 | rspcdva 2889 |
. . . . . . . . 9
|
| 75 | eqeq1 2214 |
. . . . . . . . . . 11
| |
| 76 | 75 | orbi1d 793 |
. . . . . . . . . 10
|
| 77 | 76, 7 | elrab2 2939 |
. . . . . . . . 9
|
| 78 | 74, 77 | sylib 122 |
. . . . . . . 8
|
| 79 | 78 | simprd 114 |
. . . . . . 7
|
| 80 | 79 | adantr 276 |
. . . . . 6
|
| 81 | 64, 66, 80 | mpjaodan 800 |
. . . . 5
|
| 82 | df-dc 837 |
. . . . 5
| |
| 83 | 81, 82 | sylibr 134 |
. . . 4
|
| 84 | simpr 110 |
. . . . . 6
| |
| 85 | 84 | orcd 735 |
. . . . 5
|
| 86 | 85, 82 | sylibr 134 |
. . . 4
|
| 87 | fveq2 5599 |
. . . . . . . 8
| |
| 88 | id 19 |
. . . . . . . 8
| |
| 89 | 87, 88 | eleq12d 2278 |
. . . . . . 7
|
| 90 | 6 | prid1 3749 |
. . . . . . . . 9
|
| 91 | 90, 2 | eleqtrri 2283 |
. . . . . . . 8
|
| 92 | 91 | a1i 9 |
. . . . . . 7
|
| 93 | 89, 70, 92 | rspcdva 2889 |
. . . . . 6
|
| 94 | eqeq1 2214 |
. . . . . . . 8
| |
| 95 | 94 | orbi1d 793 |
. . . . . . 7
|
| 96 | 95, 3 | elrab2 2939 |
. . . . . 6
|
| 97 | 93, 96 | sylib 122 |
. . . . 5
|
| 98 | 97 | simprd 114 |
. . . 4
|
| 99 | 83, 86, 98 | mpjaodan 800 |
. . 3
|
| 100 | 44, 99 | exlimddv 1923 |
. 2
|
| 101 | 100 | exmid1dc 4260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-exmid 4255 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ac 7349 |
| This theorem is referenced by: exmidac 7352 |
| Copyright terms: Public domain | W3C validator |