Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidaclem | Unicode version |
Description: Lemma for exmidac 7123. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.) |
Ref | Expression |
---|---|
exmidaclem.a | |
exmidaclem.b | |
exmidaclem.c |
Ref | Expression |
---|---|
exmidaclem | CHOICE EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 CHOICE CHOICE | |
2 | exmidaclem.c | . . . . . 6 | |
3 | exmidaclem.a | . . . . . . . 8 | |
4 | pp0ex 4145 | . . . . . . . . 9 | |
5 | 4 | rabex 4104 | . . . . . . . 8 |
6 | 3, 5 | eqeltri 2227 | . . . . . . 7 |
7 | exmidaclem.b | . . . . . . . 8 | |
8 | 4 | rabex 4104 | . . . . . . . 8 |
9 | 7, 8 | eqeltri 2227 | . . . . . . 7 |
10 | prexg 4166 | . . . . . . 7 | |
11 | 6, 9, 10 | mp2an 423 | . . . . . 6 |
12 | 2, 11 | eqeltri 2227 | . . . . 5 |
13 | 12 | a1i 9 | . . . 4 CHOICE |
14 | simpr 109 | . . . . . . 7 CHOICE | |
15 | 14, 2 | eleqtrdi 2247 | . . . . . 6 CHOICE |
16 | elpri 3579 | . . . . . 6 | |
17 | 0ex 4087 | . . . . . . . . . . 11 | |
18 | 17 | prid1 3661 | . . . . . . . . . 10 |
19 | eqid 2154 | . . . . . . . . . . 11 | |
20 | 19 | orci 721 | . . . . . . . . . 10 |
21 | eqeq1 2161 | . . . . . . . . . . . 12 | |
22 | 21 | orbi1d 781 | . . . . . . . . . . 11 |
23 | 22, 3 | elrab2 2867 | . . . . . . . . . 10 |
24 | 18, 20, 23 | mpbir2an 927 | . . . . . . . . 9 |
25 | eleq2 2218 | . . . . . . . . 9 | |
26 | 24, 25 | mpbiri 167 | . . . . . . . 8 |
27 | elex2 2725 | . . . . . . . 8 | |
28 | 26, 27 | syl 14 | . . . . . . 7 |
29 | p0ex 4144 | . . . . . . . . . . 11 | |
30 | 29 | prid2 3662 | . . . . . . . . . 10 |
31 | eqid 2154 | . . . . . . . . . . 11 | |
32 | 31 | orci 721 | . . . . . . . . . 10 |
33 | eqeq1 2161 | . . . . . . . . . . . 12 | |
34 | 33 | orbi1d 781 | . . . . . . . . . . 11 |
35 | 34, 7 | elrab2 2867 | . . . . . . . . . 10 |
36 | 30, 32, 35 | mpbir2an 927 | . . . . . . . . 9 |
37 | eleq2 2218 | . . . . . . . . 9 | |
38 | 36, 37 | mpbiri 167 | . . . . . . . 8 |
39 | elex2 2725 | . . . . . . . 8 | |
40 | 38, 39 | syl 14 | . . . . . . 7 |
41 | 28, 40 | jaoi 706 | . . . . . 6 |
42 | 15, 16, 41 | 3syl 17 | . . . . 5 CHOICE |
43 | 42 | ralrimiva 2527 | . . . 4 CHOICE |
44 | 1, 13, 43 | acfun 7121 | . . 3 CHOICE |
45 | 0nep0 4121 | . . . . . . . . . 10 | |
46 | 45 | neii 2326 | . . . . . . . . 9 |
47 | simplr 520 | . . . . . . . . . 10 CHOICE | |
48 | simpr 109 | . . . . . . . . . 10 CHOICE | |
49 | 47, 48 | eqeq12d 2169 | . . . . . . . . 9 CHOICE |
50 | 46, 49 | mtbiri 665 | . . . . . . . 8 CHOICE |
51 | olc 701 | . . . . . . . . . . . . 13 | |
52 | 51 | ralrimivw 2528 | . . . . . . . . . . . 12 |
53 | rabid2 2630 | . . . . . . . . . . . 12 | |
54 | 52, 53 | sylibr 133 | . . . . . . . . . . 11 |
55 | 54, 3 | eqtr4di 2205 | . . . . . . . . . 10 |
56 | olc 701 | . . . . . . . . . . . . 13 | |
57 | 56 | ralrimivw 2528 | . . . . . . . . . . . 12 |
58 | rabid2 2630 | . . . . . . . . . . . 12 | |
59 | 57, 58 | sylibr 133 | . . . . . . . . . . 11 |
60 | 59, 7 | eqtr4di 2205 | . . . . . . . . . 10 |
61 | 55, 60 | eqtr3d 2189 | . . . . . . . . 9 |
62 | 61 | fveq2d 5465 | . . . . . . . 8 |
63 | 50, 62 | nsyl 618 | . . . . . . 7 CHOICE |
64 | 63 | olcd 724 | . . . . . 6 CHOICE |
65 | simpr 109 | . . . . . . 7 CHOICE | |
66 | 65 | orcd 723 | . . . . . 6 CHOICE |
67 | fveq2 5461 | . . . . . . . . . . 11 | |
68 | id 19 | . . . . . . . . . . 11 | |
69 | 67, 68 | eleq12d 2225 | . . . . . . . . . 10 |
70 | simprr 522 | . . . . . . . . . 10 CHOICE | |
71 | 9 | prid2 3662 | . . . . . . . . . . . 12 |
72 | 71, 2 | eleqtrri 2230 | . . . . . . . . . . 11 |
73 | 72 | a1i 9 | . . . . . . . . . 10 CHOICE |
74 | 69, 70, 73 | rspcdva 2818 | . . . . . . . . 9 CHOICE |
75 | eqeq1 2161 | . . . . . . . . . . 11 | |
76 | 75 | orbi1d 781 | . . . . . . . . . 10 |
77 | 76, 7 | elrab2 2867 | . . . . . . . . 9 |
78 | 74, 77 | sylib 121 | . . . . . . . 8 CHOICE |
79 | 78 | simprd 113 | . . . . . . 7 CHOICE |
80 | 79 | adantr 274 | . . . . . 6 CHOICE |
81 | 64, 66, 80 | mpjaodan 788 | . . . . 5 CHOICE |
82 | df-dc 821 | . . . . 5 DECID | |
83 | 81, 82 | sylibr 133 | . . . 4 CHOICE DECID |
84 | simpr 109 | . . . . . 6 CHOICE | |
85 | 84 | orcd 723 | . . . . 5 CHOICE |
86 | 85, 82 | sylibr 133 | . . . 4 CHOICE DECID |
87 | fveq2 5461 | . . . . . . . 8 | |
88 | id 19 | . . . . . . . 8 | |
89 | 87, 88 | eleq12d 2225 | . . . . . . 7 |
90 | 6 | prid1 3661 | . . . . . . . . 9 |
91 | 90, 2 | eleqtrri 2230 | . . . . . . . 8 |
92 | 91 | a1i 9 | . . . . . . 7 CHOICE |
93 | 89, 70, 92 | rspcdva 2818 | . . . . . 6 CHOICE |
94 | eqeq1 2161 | . . . . . . . 8 | |
95 | 94 | orbi1d 781 | . . . . . . 7 |
96 | 95, 3 | elrab2 2867 | . . . . . 6 |
97 | 93, 96 | sylib 121 | . . . . 5 CHOICE |
98 | 97 | simprd 113 | . . . 4 CHOICE |
99 | 83, 86, 98 | mpjaodan 788 | . . 3 CHOICE DECID |
100 | 44, 99 | exlimddv 1875 | . 2 CHOICE DECID |
101 | 100 | exmid1dc 4156 | 1 CHOICE EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 820 wceq 1332 wex 1469 wcel 2125 wral 2432 crab 2436 cvv 2709 wss 3098 c0 3390 csn 3556 cpr 3557 EXMIDwem 4150 wfn 5158 cfv 5163 CHOICEwac 7119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-exmid 4151 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ac 7120 |
This theorem is referenced by: exmidac 7123 |
Copyright terms: Public domain | W3C validator |