ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidaclem Unicode version

Theorem exmidaclem 7081
Description: Lemma for exmidac 7082. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
Hypotheses
Ref Expression
exmidaclem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }
exmidaclem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }
exmidaclem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
exmidaclem  |-  (CHOICE  -> EXMID )
Distinct variable groups:    x, A    x, B    x, y
Allowed substitution hints:    A( y)    B( y)    C( x, y)

Proof of Theorem exmidaclem
Dummy variables  z  f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  -> CHOICE
)
2 exmidaclem.c . . . . . 6  |-  C  =  { A ,  B }
3 exmidaclem.a . . . . . . . 8  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }
4 pp0ex 4121 . . . . . . . . 9  |-  { (/) ,  { (/) } }  e.  _V
54rabex 4080 . . . . . . . 8  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }  e.  _V
63, 5eqeltri 2213 . . . . . . 7  |-  A  e. 
_V
7 exmidaclem.b . . . . . . . 8  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }
84rabex 4080 . . . . . . . 8  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }  e.  _V
97, 8eqeltri 2213 . . . . . . 7  |-  B  e. 
_V
10 prexg 4141 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
116, 9, 10mp2an 423 . . . . . 6  |-  { A ,  B }  e.  _V
122, 11eqeltri 2213 . . . . 5  |-  C  e. 
_V
1312a1i 9 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  C  e.  _V )
14 simpr 109 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  z  e.  C )
1514, 2eleqtrdi 2233 . . . . . 6  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  z  e.  { A ,  B } )
16 elpri 3555 . . . . . 6  |-  ( z  e.  { A ,  B }  ->  ( z  =  A  \/  z  =  B ) )
17 0ex 4063 . . . . . . . . . . 11  |-  (/)  e.  _V
1817prid1 3637 . . . . . . . . . 10  |-  (/)  e.  { (/)
,  { (/) } }
19 eqid 2140 . . . . . . . . . . 11  |-  (/)  =  (/)
2019orci 721 . . . . . . . . . 10  |-  ( (/)  =  (/)  \/  y  =  { (/) } )
21 eqeq1 2147 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
2221orbi1d 781 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  y  =  { (/) } )  <->  ( (/)  =  (/)  \/  y  =  { (/) } ) ) )
2322, 3elrab2 2847 . . . . . . . . . 10  |-  ( (/)  e.  A  <->  ( (/)  e.  { (/)
,  { (/) } }  /\  ( (/)  =  (/)  \/  y  =  { (/) } ) ) )
2418, 20, 23mpbir2an 927 . . . . . . . . 9  |-  (/)  e.  A
25 eleq2 2204 . . . . . . . . 9  |-  ( z  =  A  ->  ( (/) 
e.  z  <->  (/)  e.  A
) )
2624, 25mpbiri 167 . . . . . . . 8  |-  ( z  =  A  ->  (/)  e.  z )
27 elex2 2705 . . . . . . . 8  |-  ( (/)  e.  z  ->  E. w  w  e.  z )
2826, 27syl 14 . . . . . . 7  |-  ( z  =  A  ->  E. w  w  e.  z )
29 p0ex 4120 . . . . . . . . . . 11  |-  { (/) }  e.  _V
3029prid2 3638 . . . . . . . . . 10  |-  { (/) }  e.  { (/) ,  { (/)
} }
31 eqid 2140 . . . . . . . . . . 11  |-  { (/) }  =  { (/) }
3231orci 721 . . . . . . . . . 10  |-  ( {
(/) }  =  { (/)
}  \/  y  =  { (/) } )
33 eqeq1 2147 . . . . . . . . . . . 12  |-  ( x  =  { (/) }  ->  ( x  =  { (/) }  <->  { (/) }  =  { (/)
} ) )
3433orbi1d 781 . . . . . . . . . . 11  |-  ( x  =  { (/) }  ->  ( ( x  =  { (/)
}  \/  y  =  { (/) } )  <->  ( { (/)
}  =  { (/) }  \/  y  =  { (/)
} ) ) )
3534, 7elrab2 2847 . . . . . . . . . 10  |-  ( {
(/) }  e.  B  <->  ( { (/) }  e.  { (/)
,  { (/) } }  /\  ( { (/) }  =  { (/) }  \/  y  =  { (/) } ) ) )
3630, 32, 35mpbir2an 927 . . . . . . . . 9  |-  { (/) }  e.  B
37 eleq2 2204 . . . . . . . . 9  |-  ( z  =  B  ->  ( { (/) }  e.  z  <->  { (/) }  e.  B
) )
3836, 37mpbiri 167 . . . . . . . 8  |-  ( z  =  B  ->  { (/) }  e.  z )
39 elex2 2705 . . . . . . . 8  |-  ( {
(/) }  e.  z  ->  E. w  w  e.  z )
4038, 39syl 14 . . . . . . 7  |-  ( z  =  B  ->  E. w  w  e.  z )
4128, 40jaoi 706 . . . . . 6  |-  ( ( z  =  A  \/  z  =  B )  ->  E. w  w  e.  z )
4215, 16, 413syl 17 . . . . 5  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  E. w  w  e.  z )
4342ralrimiva 2508 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  A. z  e.  C  E. w  w  e.  z )
441, 13, 43acfun 7080 . . 3  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  E. f ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )
45 0nep0 4097 . . . . . . . . . 10  |-  (/)  =/=  { (/)
}
4645neii 2311 . . . . . . . . 9  |-  -.  (/)  =  { (/)
}
47 simplr 520 . . . . . . . . . 10  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( f `  A
)  =  (/) )
48 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( f `  B
)  =  { (/) } )
4947, 48eqeq12d 2155 . . . . . . . . 9  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( ( f `  A )  =  ( f `  B )  <->  (/)  =  { (/) } ) )
5046, 49mtbiri 665 . . . . . . . 8  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  ->  -.  ( f `  A
)  =  ( f `
 B ) )
51 olc 701 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  ( x  =  (/)  \/  y  =  { (/) } ) )
5251ralrimivw 2509 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  A. x  e.  { (/) ,  { (/) } }  (
x  =  (/)  \/  y  =  { (/) } ) )
53 rabid2 2610 . . . . . . . . . . . 12  |-  ( {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }  <->  A. x  e.  { (/) ,  { (/) } }  ( x  =  (/)  \/  y  =  { (/)
} ) )
5452, 53sylibr 133 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) } )
5554, 3eqtr4di 2191 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  A )
56 olc 701 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  ( x  =  { (/) }  \/  y  =  { (/)
} ) )
5756ralrimivw 2509 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  A. x  e.  { (/) ,  { (/) } }  (
x  =  { (/) }  \/  y  =  { (/)
} ) )
58 rabid2 2610 . . . . . . . . . . . 12  |-  ( {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }  <->  A. x  e.  { (/) ,  { (/) } }  (
x  =  { (/) }  \/  y  =  { (/)
} ) )
5957, 58sylibr 133 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) } )
6059, 7eqtr4di 2191 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  B )
6155, 60eqtr3d 2175 . . . . . . . . 9  |-  ( y  =  { (/) }  ->  A  =  B )
6261fveq2d 5433 . . . . . . . 8  |-  ( y  =  { (/) }  ->  ( f `  A )  =  ( f `  B ) )
6350, 62nsyl 618 . . . . . . 7  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  ->  -.  y  =  { (/)
} )
6463olcd 724 . . . . . 6  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
65 simpr 109 . . . . . . 7  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
6665orcd 723 . . . . . 6  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  y  =  { (/) } )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
67 fveq2 5429 . . . . . . . . . . 11  |-  ( z  =  B  ->  (
f `  z )  =  ( f `  B ) )
68 id 19 . . . . . . . . . . 11  |-  ( z  =  B  ->  z  =  B )
6967, 68eleq12d 2211 . . . . . . . . . 10  |-  ( z  =  B  ->  (
( f `  z
)  e.  z  <->  ( f `  B )  e.  B
) )
70 simprr 522 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  A. z  e.  C  ( f `  z
)  e.  z )
719prid2 3638 . . . . . . . . . . . 12  |-  B  e. 
{ A ,  B }
7271, 2eleqtrri 2216 . . . . . . . . . . 11  |-  B  e.  C
7372a1i 9 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  B  e.  C )
7469, 70, 73rspcdva 2798 . . . . . . . . 9  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( f `  B
)  e.  B )
75 eqeq1 2147 . . . . . . . . . . 11  |-  ( x  =  ( f `  B )  ->  (
x  =  { (/) }  <-> 
( f `  B
)  =  { (/) } ) )
7675orbi1d 781 . . . . . . . . . 10  |-  ( x  =  ( f `  B )  ->  (
( x  =  { (/)
}  \/  y  =  { (/) } )  <->  ( (
f `  B )  =  { (/) }  \/  y  =  { (/) } ) ) )
7776, 7elrab2 2847 . . . . . . . . 9  |-  ( ( f `  B )  e.  B  <->  ( (
f `  B )  e.  { (/) ,  { (/) } }  /\  ( ( f `  B )  =  { (/) }  \/  y  =  { (/) } ) ) )
7874, 77sylib 121 . . . . . . . 8  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  B )  e.  { (/)
,  { (/) } }  /\  ( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) ) )
7978simprd 113 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) )
8079adantr 274 . . . . . 6  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> 
( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) )
8164, 66, 80mpjaodan 788 . . . . 5  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
82 df-dc 821 . . . . 5  |-  (DECID  y  =  { (/) }  <->  ( y  =  { (/) }  \/  -.  y  =  { (/) } ) )
8381, 82sylibr 133 . . . 4  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> DECID  y  =  { (/) } )
84 simpr 109 . . . . . 6  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  ->  y  =  { (/)
} )
8584orcd 723 . . . . 5  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  ->  ( y  =  { (/) }  \/  -.  y  =  { (/) } ) )
8685, 82sylibr 133 . . . 4  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  -> DECID 
y  =  { (/) } )
87 fveq2 5429 . . . . . . . 8  |-  ( z  =  A  ->  (
f `  z )  =  ( f `  A ) )
88 id 19 . . . . . . . 8  |-  ( z  =  A  ->  z  =  A )
8987, 88eleq12d 2211 . . . . . . 7  |-  ( z  =  A  ->  (
( f `  z
)  e.  z  <->  ( f `  A )  e.  A
) )
906prid1 3637 . . . . . . . . 9  |-  A  e. 
{ A ,  B }
9190, 2eleqtrri 2216 . . . . . . . 8  |-  A  e.  C
9291a1i 9 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  A  e.  C )
9389, 70, 92rspcdva 2798 . . . . . 6  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( f `  A
)  e.  A )
94 eqeq1 2147 . . . . . . . 8  |-  ( x  =  ( f `  A )  ->  (
x  =  (/)  <->  ( f `  A )  =  (/) ) )
9594orbi1d 781 . . . . . . 7  |-  ( x  =  ( f `  A )  ->  (
( x  =  (/)  \/  y  =  { (/) } )  <->  ( ( f `
 A )  =  (/)  \/  y  =  { (/)
} ) ) )
9695, 3elrab2 2847 . . . . . 6  |-  ( ( f `  A )  e.  A  <->  ( (
f `  A )  e.  { (/) ,  { (/) } }  /\  ( ( f `  A )  =  (/)  \/  y  =  { (/) } ) ) )
9793, 96sylib 121 . . . . 5  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  A )  e.  { (/)
,  { (/) } }  /\  ( ( f `  A )  =  (/)  \/  y  =  { (/) } ) ) )
9897simprd 113 . . . 4  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  A )  =  (/)  \/  y  =  { (/) } ) )
9983, 86, 98mpjaodan 788 . . 3  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> DECID  y  =  { (/) } )
10044, 99exlimddv 1871 . 2  |-  ( (CHOICE  /\  y  C_  { (/) } )  -> DECID 
y  =  { (/) } )
101100exmid1dc 4131 1  |-  (CHOICE  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1332   E.wex 1469    e. wcel 1481   A.wral 2417   {crab 2421   _Vcvv 2689    C_ wss 3076   (/)c0 3368   {csn 3532   {cpr 3533  EXMIDwem 4126    Fn wfn 5126   ` cfv 5131  CHOICEwac 7078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-exmid 4127  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ac 7079
This theorem is referenced by:  exmidac  7082
  Copyright terms: Public domain W3C validator