ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidaclem Unicode version

Theorem exmidaclem 7122
Description: Lemma for exmidac 7123. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.)
Hypotheses
Ref Expression
exmidaclem.a  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }
exmidaclem.b  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }
exmidaclem.c  |-  C  =  { A ,  B }
Assertion
Ref Expression
exmidaclem  |-  (CHOICE  -> EXMID )
Distinct variable groups:    x, A    x, B    x, y
Allowed substitution hints:    A( y)    B( y)    C( x, y)

Proof of Theorem exmidaclem
Dummy variables  z  f  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  -> CHOICE
)
2 exmidaclem.c . . . . . 6  |-  C  =  { A ,  B }
3 exmidaclem.a . . . . . . . 8  |-  A  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }
4 pp0ex 4145 . . . . . . . . 9  |-  { (/) ,  { (/) } }  e.  _V
54rabex 4104 . . . . . . . 8  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/) } ) }  e.  _V
63, 5eqeltri 2227 . . . . . . 7  |-  A  e. 
_V
7 exmidaclem.b . . . . . . . 8  |-  B  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }
84rabex 4104 . . . . . . . 8  |-  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }  e.  _V
97, 8eqeltri 2227 . . . . . . 7  |-  B  e. 
_V
10 prexg 4166 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
116, 9, 10mp2an 423 . . . . . 6  |-  { A ,  B }  e.  _V
122, 11eqeltri 2227 . . . . 5  |-  C  e. 
_V
1312a1i 9 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  C  e.  _V )
14 simpr 109 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  z  e.  C )
1514, 2eleqtrdi 2247 . . . . . 6  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  z  e.  { A ,  B } )
16 elpri 3579 . . . . . 6  |-  ( z  e.  { A ,  B }  ->  ( z  =  A  \/  z  =  B ) )
17 0ex 4087 . . . . . . . . . . 11  |-  (/)  e.  _V
1817prid1 3661 . . . . . . . . . 10  |-  (/)  e.  { (/)
,  { (/) } }
19 eqid 2154 . . . . . . . . . . 11  |-  (/)  =  (/)
2019orci 721 . . . . . . . . . 10  |-  ( (/)  =  (/)  \/  y  =  { (/) } )
21 eqeq1 2161 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
2221orbi1d 781 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  y  =  { (/) } )  <->  ( (/)  =  (/)  \/  y  =  { (/) } ) ) )
2322, 3elrab2 2867 . . . . . . . . . 10  |-  ( (/)  e.  A  <->  ( (/)  e.  { (/)
,  { (/) } }  /\  ( (/)  =  (/)  \/  y  =  { (/) } ) ) )
2418, 20, 23mpbir2an 927 . . . . . . . . 9  |-  (/)  e.  A
25 eleq2 2218 . . . . . . . . 9  |-  ( z  =  A  ->  ( (/) 
e.  z  <->  (/)  e.  A
) )
2624, 25mpbiri 167 . . . . . . . 8  |-  ( z  =  A  ->  (/)  e.  z )
27 elex2 2725 . . . . . . . 8  |-  ( (/)  e.  z  ->  E. w  w  e.  z )
2826, 27syl 14 . . . . . . 7  |-  ( z  =  A  ->  E. w  w  e.  z )
29 p0ex 4144 . . . . . . . . . . 11  |-  { (/) }  e.  _V
3029prid2 3662 . . . . . . . . . 10  |-  { (/) }  e.  { (/) ,  { (/)
} }
31 eqid 2154 . . . . . . . . . . 11  |-  { (/) }  =  { (/) }
3231orci 721 . . . . . . . . . 10  |-  ( {
(/) }  =  { (/)
}  \/  y  =  { (/) } )
33 eqeq1 2161 . . . . . . . . . . . 12  |-  ( x  =  { (/) }  ->  ( x  =  { (/) }  <->  { (/) }  =  { (/)
} ) )
3433orbi1d 781 . . . . . . . . . . 11  |-  ( x  =  { (/) }  ->  ( ( x  =  { (/)
}  \/  y  =  { (/) } )  <->  ( { (/)
}  =  { (/) }  \/  y  =  { (/)
} ) ) )
3534, 7elrab2 2867 . . . . . . . . . 10  |-  ( {
(/) }  e.  B  <->  ( { (/) }  e.  { (/)
,  { (/) } }  /\  ( { (/) }  =  { (/) }  \/  y  =  { (/) } ) ) )
3630, 32, 35mpbir2an 927 . . . . . . . . 9  |-  { (/) }  e.  B
37 eleq2 2218 . . . . . . . . 9  |-  ( z  =  B  ->  ( { (/) }  e.  z  <->  { (/) }  e.  B
) )
3836, 37mpbiri 167 . . . . . . . 8  |-  ( z  =  B  ->  { (/) }  e.  z )
39 elex2 2725 . . . . . . . 8  |-  ( {
(/) }  e.  z  ->  E. w  w  e.  z )
4038, 39syl 14 . . . . . . 7  |-  ( z  =  B  ->  E. w  w  e.  z )
4128, 40jaoi 706 . . . . . 6  |-  ( ( z  =  A  \/  z  =  B )  ->  E. w  w  e.  z )
4215, 16, 413syl 17 . . . . 5  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  z  e.  C )  ->  E. w  w  e.  z )
4342ralrimiva 2527 . . . 4  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  A. z  e.  C  E. w  w  e.  z )
441, 13, 43acfun 7121 . . 3  |-  ( (CHOICE  /\  y  C_  { (/) } )  ->  E. f ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )
45 0nep0 4121 . . . . . . . . . 10  |-  (/)  =/=  { (/)
}
4645neii 2326 . . . . . . . . 9  |-  -.  (/)  =  { (/)
}
47 simplr 520 . . . . . . . . . 10  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( f `  A
)  =  (/) )
48 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( f `  B
)  =  { (/) } )
4947, 48eqeq12d 2169 . . . . . . . . 9  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( ( f `  A )  =  ( f `  B )  <->  (/)  =  { (/) } ) )
5046, 49mtbiri 665 . . . . . . . 8  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  ->  -.  ( f `  A
)  =  ( f `
 B ) )
51 olc 701 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  ( x  =  (/)  \/  y  =  { (/) } ) )
5251ralrimivw 2528 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  A. x  e.  { (/) ,  { (/) } }  (
x  =  (/)  \/  y  =  { (/) } ) )
53 rabid2 2630 . . . . . . . . . . . 12  |-  ( {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) }  <->  A. x  e.  { (/) ,  { (/) } }  ( x  =  (/)  \/  y  =  { (/)
} ) )
5452, 53sylibr 133 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  (/)  \/  y  =  { (/)
} ) } )
5554, 3eqtr4di 2205 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  A )
56 olc 701 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  ( x  =  { (/) }  \/  y  =  { (/)
} ) )
5756ralrimivw 2528 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  A. x  e.  { (/) ,  { (/) } }  (
x  =  { (/) }  \/  y  =  { (/)
} ) )
58 rabid2 2630 . . . . . . . . . . . 12  |-  ( {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) }  <->  A. x  e.  { (/) ,  { (/) } }  (
x  =  { (/) }  \/  y  =  { (/)
} ) )
5957, 58sylibr 133 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  { x  e.  { (/)
,  { (/) } }  |  ( x  =  { (/) }  \/  y  =  { (/) } ) } )
6059, 7eqtr4di 2205 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  {
(/) ,  { (/) } }  =  B )
6155, 60eqtr3d 2189 . . . . . . . . 9  |-  ( y  =  { (/) }  ->  A  =  B )
6261fveq2d 5465 . . . . . . . 8  |-  ( y  =  { (/) }  ->  ( f `  A )  =  ( f `  B ) )
6350, 62nsyl 618 . . . . . . 7  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  ->  -.  y  =  { (/)
} )
6463olcd 724 . . . . . 6  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  (
f `  B )  =  { (/) } )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
65 simpr 109 . . . . . . 7  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
6665orcd 723 . . . . . 6  |-  ( ( ( ( (CHOICE  /\  y  C_ 
{ (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  ( f `  z
)  e.  z ) )  /\  ( f `
 A )  =  (/) )  /\  y  =  { (/) } )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
67 fveq2 5461 . . . . . . . . . . 11  |-  ( z  =  B  ->  (
f `  z )  =  ( f `  B ) )
68 id 19 . . . . . . . . . . 11  |-  ( z  =  B  ->  z  =  B )
6967, 68eleq12d 2225 . . . . . . . . . 10  |-  ( z  =  B  ->  (
( f `  z
)  e.  z  <->  ( f `  B )  e.  B
) )
70 simprr 522 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  A. z  e.  C  ( f `  z
)  e.  z )
719prid2 3662 . . . . . . . . . . . 12  |-  B  e. 
{ A ,  B }
7271, 2eleqtrri 2230 . . . . . . . . . . 11  |-  B  e.  C
7372a1i 9 . . . . . . . . . 10  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  B  e.  C )
7469, 70, 73rspcdva 2818 . . . . . . . . 9  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( f `  B
)  e.  B )
75 eqeq1 2161 . . . . . . . . . . 11  |-  ( x  =  ( f `  B )  ->  (
x  =  { (/) }  <-> 
( f `  B
)  =  { (/) } ) )
7675orbi1d 781 . . . . . . . . . 10  |-  ( x  =  ( f `  B )  ->  (
( x  =  { (/)
}  \/  y  =  { (/) } )  <->  ( (
f `  B )  =  { (/) }  \/  y  =  { (/) } ) ) )
7776, 7elrab2 2867 . . . . . . . . 9  |-  ( ( f `  B )  e.  B  <->  ( (
f `  B )  e.  { (/) ,  { (/) } }  /\  ( ( f `  B )  =  { (/) }  \/  y  =  { (/) } ) ) )
7874, 77sylib 121 . . . . . . . 8  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  B )  e.  { (/)
,  { (/) } }  /\  ( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) ) )
7978simprd 113 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) )
8079adantr 274 . . . . . 6  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> 
( ( f `  B )  =  { (/)
}  \/  y  =  { (/) } ) )
8164, 66, 80mpjaodan 788 . . . . 5  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> 
( y  =  { (/)
}  \/  -.  y  =  { (/) } ) )
82 df-dc 821 . . . . 5  |-  (DECID  y  =  { (/) }  <->  ( y  =  { (/) }  \/  -.  y  =  { (/) } ) )
8381, 82sylibr 133 . . . 4  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  ( f `  A
)  =  (/) )  -> DECID  y  =  { (/) } )
84 simpr 109 . . . . . 6  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  ->  y  =  { (/)
} )
8584orcd 723 . . . . 5  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  ->  ( y  =  { (/) }  \/  -.  y  =  { (/) } ) )
8685, 82sylibr 133 . . . 4  |-  ( ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  /\  y  =  { (/) } )  -> DECID 
y  =  { (/) } )
87 fveq2 5461 . . . . . . . 8  |-  ( z  =  A  ->  (
f `  z )  =  ( f `  A ) )
88 id 19 . . . . . . . 8  |-  ( z  =  A  ->  z  =  A )
8987, 88eleq12d 2225 . . . . . . 7  |-  ( z  =  A  ->  (
( f `  z
)  e.  z  <->  ( f `  A )  e.  A
) )
906prid1 3661 . . . . . . . . 9  |-  A  e. 
{ A ,  B }
9190, 2eleqtrri 2230 . . . . . . . 8  |-  A  e.  C
9291a1i 9 . . . . . . 7  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  ->  A  e.  C )
9389, 70, 92rspcdva 2818 . . . . . 6  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( f `  A
)  e.  A )
94 eqeq1 2161 . . . . . . . 8  |-  ( x  =  ( f `  A )  ->  (
x  =  (/)  <->  ( f `  A )  =  (/) ) )
9594orbi1d 781 . . . . . . 7  |-  ( x  =  ( f `  A )  ->  (
( x  =  (/)  \/  y  =  { (/) } )  <->  ( ( f `
 A )  =  (/)  \/  y  =  { (/)
} ) ) )
9695, 3elrab2 2867 . . . . . 6  |-  ( ( f `  A )  e.  A  <->  ( (
f `  A )  e.  { (/) ,  { (/) } }  /\  ( ( f `  A )  =  (/)  \/  y  =  { (/) } ) ) )
9793, 96sylib 121 . . . . 5  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  A )  e.  { (/)
,  { (/) } }  /\  ( ( f `  A )  =  (/)  \/  y  =  { (/) } ) ) )
9897simprd 113 . . . 4  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> 
( ( f `  A )  =  (/)  \/  y  =  { (/) } ) )
9983, 86, 98mpjaodan 788 . . 3  |-  ( ( (CHOICE 
/\  y  C_  { (/) } )  /\  ( f  Fn  C  /\  A. z  e.  C  (
f `  z )  e.  z ) )  -> DECID  y  =  { (/) } )
10044, 99exlimddv 1875 . 2  |-  ( (CHOICE  /\  y  C_  { (/) } )  -> DECID 
y  =  { (/) } )
101100exmid1dc 4156 1  |-  (CHOICE  -> EXMID )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1332   E.wex 1469    e. wcel 2125   A.wral 2432   {crab 2436   _Vcvv 2709    C_ wss 3098   (/)c0 3390   {csn 3556   {cpr 3557  EXMIDwem 4150    Fn wfn 5158   ` cfv 5163  CHOICEwac 7119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-exmid 4151  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ac 7120
This theorem is referenced by:  exmidac  7123
  Copyright terms: Public domain W3C validator