Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidaclem | Unicode version |
Description: Lemma for exmidac 7186. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.) |
Ref | Expression |
---|---|
exmidaclem.a | |
exmidaclem.b | |
exmidaclem.c |
Ref | Expression |
---|---|
exmidaclem | CHOICE EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . 4 CHOICE CHOICE | |
2 | exmidaclem.c | . . . . . 6 | |
3 | exmidaclem.a | . . . . . . . 8 | |
4 | pp0ex 4175 | . . . . . . . . 9 | |
5 | 4 | rabex 4133 | . . . . . . . 8 |
6 | 3, 5 | eqeltri 2243 | . . . . . . 7 |
7 | exmidaclem.b | . . . . . . . 8 | |
8 | 4 | rabex 4133 | . . . . . . . 8 |
9 | 7, 8 | eqeltri 2243 | . . . . . . 7 |
10 | prexg 4196 | . . . . . . 7 | |
11 | 6, 9, 10 | mp2an 424 | . . . . . 6 |
12 | 2, 11 | eqeltri 2243 | . . . . 5 |
13 | 12 | a1i 9 | . . . 4 CHOICE |
14 | simpr 109 | . . . . . . 7 CHOICE | |
15 | 14, 2 | eleqtrdi 2263 | . . . . . 6 CHOICE |
16 | elpri 3606 | . . . . . 6 | |
17 | 0ex 4116 | . . . . . . . . . . 11 | |
18 | 17 | prid1 3689 | . . . . . . . . . 10 |
19 | eqid 2170 | . . . . . . . . . . 11 | |
20 | 19 | orci 726 | . . . . . . . . . 10 |
21 | eqeq1 2177 | . . . . . . . . . . . 12 | |
22 | 21 | orbi1d 786 | . . . . . . . . . . 11 |
23 | 22, 3 | elrab2 2889 | . . . . . . . . . 10 |
24 | 18, 20, 23 | mpbir2an 937 | . . . . . . . . 9 |
25 | eleq2 2234 | . . . . . . . . 9 | |
26 | 24, 25 | mpbiri 167 | . . . . . . . 8 |
27 | elex2 2746 | . . . . . . . 8 | |
28 | 26, 27 | syl 14 | . . . . . . 7 |
29 | p0ex 4174 | . . . . . . . . . . 11 | |
30 | 29 | prid2 3690 | . . . . . . . . . 10 |
31 | eqid 2170 | . . . . . . . . . . 11 | |
32 | 31 | orci 726 | . . . . . . . . . 10 |
33 | eqeq1 2177 | . . . . . . . . . . . 12 | |
34 | 33 | orbi1d 786 | . . . . . . . . . . 11 |
35 | 34, 7 | elrab2 2889 | . . . . . . . . . 10 |
36 | 30, 32, 35 | mpbir2an 937 | . . . . . . . . 9 |
37 | eleq2 2234 | . . . . . . . . 9 | |
38 | 36, 37 | mpbiri 167 | . . . . . . . 8 |
39 | elex2 2746 | . . . . . . . 8 | |
40 | 38, 39 | syl 14 | . . . . . . 7 |
41 | 28, 40 | jaoi 711 | . . . . . 6 |
42 | 15, 16, 41 | 3syl 17 | . . . . 5 CHOICE |
43 | 42 | ralrimiva 2543 | . . . 4 CHOICE |
44 | 1, 13, 43 | acfun 7184 | . . 3 CHOICE |
45 | 0nep0 4151 | . . . . . . . . . 10 | |
46 | 45 | neii 2342 | . . . . . . . . 9 |
47 | simplr 525 | . . . . . . . . . 10 CHOICE | |
48 | simpr 109 | . . . . . . . . . 10 CHOICE | |
49 | 47, 48 | eqeq12d 2185 | . . . . . . . . 9 CHOICE |
50 | 46, 49 | mtbiri 670 | . . . . . . . 8 CHOICE |
51 | olc 706 | . . . . . . . . . . . . 13 | |
52 | 51 | ralrimivw 2544 | . . . . . . . . . . . 12 |
53 | rabid2 2646 | . . . . . . . . . . . 12 | |
54 | 52, 53 | sylibr 133 | . . . . . . . . . . 11 |
55 | 54, 3 | eqtr4di 2221 | . . . . . . . . . 10 |
56 | olc 706 | . . . . . . . . . . . . 13 | |
57 | 56 | ralrimivw 2544 | . . . . . . . . . . . 12 |
58 | rabid2 2646 | . . . . . . . . . . . 12 | |
59 | 57, 58 | sylibr 133 | . . . . . . . . . . 11 |
60 | 59, 7 | eqtr4di 2221 | . . . . . . . . . 10 |
61 | 55, 60 | eqtr3d 2205 | . . . . . . . . 9 |
62 | 61 | fveq2d 5500 | . . . . . . . 8 |
63 | 50, 62 | nsyl 623 | . . . . . . 7 CHOICE |
64 | 63 | olcd 729 | . . . . . 6 CHOICE |
65 | simpr 109 | . . . . . . 7 CHOICE | |
66 | 65 | orcd 728 | . . . . . 6 CHOICE |
67 | fveq2 5496 | . . . . . . . . . . 11 | |
68 | id 19 | . . . . . . . . . . 11 | |
69 | 67, 68 | eleq12d 2241 | . . . . . . . . . 10 |
70 | simprr 527 | . . . . . . . . . 10 CHOICE | |
71 | 9 | prid2 3690 | . . . . . . . . . . . 12 |
72 | 71, 2 | eleqtrri 2246 | . . . . . . . . . . 11 |
73 | 72 | a1i 9 | . . . . . . . . . 10 CHOICE |
74 | 69, 70, 73 | rspcdva 2839 | . . . . . . . . 9 CHOICE |
75 | eqeq1 2177 | . . . . . . . . . . 11 | |
76 | 75 | orbi1d 786 | . . . . . . . . . 10 |
77 | 76, 7 | elrab2 2889 | . . . . . . . . 9 |
78 | 74, 77 | sylib 121 | . . . . . . . 8 CHOICE |
79 | 78 | simprd 113 | . . . . . . 7 CHOICE |
80 | 79 | adantr 274 | . . . . . 6 CHOICE |
81 | 64, 66, 80 | mpjaodan 793 | . . . . 5 CHOICE |
82 | df-dc 830 | . . . . 5 DECID | |
83 | 81, 82 | sylibr 133 | . . . 4 CHOICE DECID |
84 | simpr 109 | . . . . . 6 CHOICE | |
85 | 84 | orcd 728 | . . . . 5 CHOICE |
86 | 85, 82 | sylibr 133 | . . . 4 CHOICE DECID |
87 | fveq2 5496 | . . . . . . . 8 | |
88 | id 19 | . . . . . . . 8 | |
89 | 87, 88 | eleq12d 2241 | . . . . . . 7 |
90 | 6 | prid1 3689 | . . . . . . . . 9 |
91 | 90, 2 | eleqtrri 2246 | . . . . . . . 8 |
92 | 91 | a1i 9 | . . . . . . 7 CHOICE |
93 | 89, 70, 92 | rspcdva 2839 | . . . . . 6 CHOICE |
94 | eqeq1 2177 | . . . . . . . 8 | |
95 | 94 | orbi1d 786 | . . . . . . 7 |
96 | 95, 3 | elrab2 2889 | . . . . . 6 |
97 | 93, 96 | sylib 121 | . . . . 5 CHOICE |
98 | 97 | simprd 113 | . . . 4 CHOICE |
99 | 83, 86, 98 | mpjaodan 793 | . . 3 CHOICE DECID |
100 | 44, 99 | exlimddv 1891 | . 2 CHOICE DECID |
101 | 100 | exmid1dc 4186 | 1 CHOICE EXMID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 wex 1485 wcel 2141 wral 2448 crab 2452 cvv 2730 wss 3121 c0 3414 csn 3583 cpr 3584 EXMIDwem 4180 wfn 5193 cfv 5198 CHOICEwac 7182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-exmid 4181 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ac 7183 |
This theorem is referenced by: exmidac 7186 |
Copyright terms: Public domain | W3C validator |