| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidaclem | Unicode version | ||
| Description: Lemma for exmidac 7276. The result, with a few hypotheses to break out commonly used expressions. (Contributed by Jim Kingdon, 21-Nov-2023.) |
| Ref | Expression |
|---|---|
| exmidaclem.a |
|
| exmidaclem.b |
|
| exmidaclem.c |
|
| Ref | Expression |
|---|---|
| exmidaclem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | exmidaclem.c |
. . . . . 6
| |
| 3 | exmidaclem.a |
. . . . . . . 8
| |
| 4 | pp0ex 4222 |
. . . . . . . . 9
| |
| 5 | 4 | rabex 4177 |
. . . . . . . 8
|
| 6 | 3, 5 | eqeltri 2269 |
. . . . . . 7
|
| 7 | exmidaclem.b |
. . . . . . . 8
| |
| 8 | 4 | rabex 4177 |
. . . . . . . 8
|
| 9 | 7, 8 | eqeltri 2269 |
. . . . . . 7
|
| 10 | prexg 4244 |
. . . . . . 7
| |
| 11 | 6, 9, 10 | mp2an 426 |
. . . . . 6
|
| 12 | 2, 11 | eqeltri 2269 |
. . . . 5
|
| 13 | 12 | a1i 9 |
. . . 4
|
| 14 | simpr 110 |
. . . . . . 7
| |
| 15 | 14, 2 | eleqtrdi 2289 |
. . . . . 6
|
| 16 | elpri 3645 |
. . . . . 6
| |
| 17 | 0ex 4160 |
. . . . . . . . . . 11
| |
| 18 | 17 | prid1 3728 |
. . . . . . . . . 10
|
| 19 | eqid 2196 |
. . . . . . . . . . 11
| |
| 20 | 19 | orci 732 |
. . . . . . . . . 10
|
| 21 | eqeq1 2203 |
. . . . . . . . . . . 12
| |
| 22 | 21 | orbi1d 792 |
. . . . . . . . . . 11
|
| 23 | 22, 3 | elrab2 2923 |
. . . . . . . . . 10
|
| 24 | 18, 20, 23 | mpbir2an 944 |
. . . . . . . . 9
|
| 25 | eleq2 2260 |
. . . . . . . . 9
| |
| 26 | 24, 25 | mpbiri 168 |
. . . . . . . 8
|
| 27 | elex2 2779 |
. . . . . . . 8
| |
| 28 | 26, 27 | syl 14 |
. . . . . . 7
|
| 29 | p0ex 4221 |
. . . . . . . . . . 11
| |
| 30 | 29 | prid2 3729 |
. . . . . . . . . 10
|
| 31 | eqid 2196 |
. . . . . . . . . . 11
| |
| 32 | 31 | orci 732 |
. . . . . . . . . 10
|
| 33 | eqeq1 2203 |
. . . . . . . . . . . 12
| |
| 34 | 33 | orbi1d 792 |
. . . . . . . . . . 11
|
| 35 | 34, 7 | elrab2 2923 |
. . . . . . . . . 10
|
| 36 | 30, 32, 35 | mpbir2an 944 |
. . . . . . . . 9
|
| 37 | eleq2 2260 |
. . . . . . . . 9
| |
| 38 | 36, 37 | mpbiri 168 |
. . . . . . . 8
|
| 39 | elex2 2779 |
. . . . . . . 8
| |
| 40 | 38, 39 | syl 14 |
. . . . . . 7
|
| 41 | 28, 40 | jaoi 717 |
. . . . . 6
|
| 42 | 15, 16, 41 | 3syl 17 |
. . . . 5
|
| 43 | 42 | ralrimiva 2570 |
. . . 4
|
| 44 | 1, 13, 43 | acfun 7274 |
. . 3
|
| 45 | 0nep0 4198 |
. . . . . . . . . 10
| |
| 46 | 45 | neii 2369 |
. . . . . . . . 9
|
| 47 | simplr 528 |
. . . . . . . . . 10
| |
| 48 | simpr 110 |
. . . . . . . . . 10
| |
| 49 | 47, 48 | eqeq12d 2211 |
. . . . . . . . 9
|
| 50 | 46, 49 | mtbiri 676 |
. . . . . . . 8
|
| 51 | olc 712 |
. . . . . . . . . . . . 13
| |
| 52 | 51 | ralrimivw 2571 |
. . . . . . . . . . . 12
|
| 53 | rabid2 2674 |
. . . . . . . . . . . 12
| |
| 54 | 52, 53 | sylibr 134 |
. . . . . . . . . . 11
|
| 55 | 54, 3 | eqtr4di 2247 |
. . . . . . . . . 10
|
| 56 | olc 712 |
. . . . . . . . . . . . 13
| |
| 57 | 56 | ralrimivw 2571 |
. . . . . . . . . . . 12
|
| 58 | rabid2 2674 |
. . . . . . . . . . . 12
| |
| 59 | 57, 58 | sylibr 134 |
. . . . . . . . . . 11
|
| 60 | 59, 7 | eqtr4di 2247 |
. . . . . . . . . 10
|
| 61 | 55, 60 | eqtr3d 2231 |
. . . . . . . . 9
|
| 62 | 61 | fveq2d 5562 |
. . . . . . . 8
|
| 63 | 50, 62 | nsyl 629 |
. . . . . . 7
|
| 64 | 63 | olcd 735 |
. . . . . 6
|
| 65 | simpr 110 |
. . . . . . 7
| |
| 66 | 65 | orcd 734 |
. . . . . 6
|
| 67 | fveq2 5558 |
. . . . . . . . . . 11
| |
| 68 | id 19 |
. . . . . . . . . . 11
| |
| 69 | 67, 68 | eleq12d 2267 |
. . . . . . . . . 10
|
| 70 | simprr 531 |
. . . . . . . . . 10
| |
| 71 | 9 | prid2 3729 |
. . . . . . . . . . . 12
|
| 72 | 71, 2 | eleqtrri 2272 |
. . . . . . . . . . 11
|
| 73 | 72 | a1i 9 |
. . . . . . . . . 10
|
| 74 | 69, 70, 73 | rspcdva 2873 |
. . . . . . . . 9
|
| 75 | eqeq1 2203 |
. . . . . . . . . . 11
| |
| 76 | 75 | orbi1d 792 |
. . . . . . . . . 10
|
| 77 | 76, 7 | elrab2 2923 |
. . . . . . . . 9
|
| 78 | 74, 77 | sylib 122 |
. . . . . . . 8
|
| 79 | 78 | simprd 114 |
. . . . . . 7
|
| 80 | 79 | adantr 276 |
. . . . . 6
|
| 81 | 64, 66, 80 | mpjaodan 799 |
. . . . 5
|
| 82 | df-dc 836 |
. . . . 5
| |
| 83 | 81, 82 | sylibr 134 |
. . . 4
|
| 84 | simpr 110 |
. . . . . 6
| |
| 85 | 84 | orcd 734 |
. . . . 5
|
| 86 | 85, 82 | sylibr 134 |
. . . 4
|
| 87 | fveq2 5558 |
. . . . . . . 8
| |
| 88 | id 19 |
. . . . . . . 8
| |
| 89 | 87, 88 | eleq12d 2267 |
. . . . . . 7
|
| 90 | 6 | prid1 3728 |
. . . . . . . . 9
|
| 91 | 90, 2 | eleqtrri 2272 |
. . . . . . . 8
|
| 92 | 91 | a1i 9 |
. . . . . . 7
|
| 93 | 89, 70, 92 | rspcdva 2873 |
. . . . . 6
|
| 94 | eqeq1 2203 |
. . . . . . . 8
| |
| 95 | 94 | orbi1d 792 |
. . . . . . 7
|
| 96 | 95, 3 | elrab2 2923 |
. . . . . 6
|
| 97 | 93, 96 | sylib 122 |
. . . . 5
|
| 98 | 97 | simprd 114 |
. . . 4
|
| 99 | 83, 86, 98 | mpjaodan 799 |
. . 3
|
| 100 | 44, 99 | exlimddv 1913 |
. 2
|
| 101 | 100 | exmid1dc 4233 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-exmid 4228 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ac 7273 |
| This theorem is referenced by: exmidac 7276 |
| Copyright terms: Public domain | W3C validator |