| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nep0 | GIF version | ||
| Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| 0nep0 | ⊢ ∅ ≠ {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4210 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | snnz 3785 | . 2 ⊢ {∅} ≠ ∅ |
| 3 | 2 | necomi 2485 | 1 ⊢ ∅ ≠ {∅} |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2400 ∅c0 3491 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-v 2801 df-dif 3199 df-nul 3492 df-sn 3672 |
| This theorem is referenced by: 0inp0 4249 opthprc 4769 2dom 6956 exmidpw 7066 exmidpw2en 7070 exmidaclem 7386 pw1dom2 7408 |
| Copyright terms: Public domain | W3C validator |