ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0nep0 GIF version

Theorem 0nep0 4194
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
0nep0 ∅ ≠ {∅}

Proof of Theorem 0nep0
StepHypRef Expression
1 0ex 4156 . . 3 ∅ ∈ V
21snnz 3737 . 2 {∅} ≠ ∅
32necomi 2449 1 ∅ ≠ {∅}
Colors of variables: wff set class
Syntax hints:  wne 2364  c0 3446  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-nul 4155
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-v 2762  df-dif 3155  df-nul 3447  df-sn 3624
This theorem is referenced by:  0inp0  4195  opthprc  4710  2dom  6859  exmidpw  6964  exmidpw2en  6968  exmidaclem  7268  pw1dom2  7287
  Copyright terms: Public domain W3C validator