![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0nep0 | GIF version |
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
0nep0 | ⊢ ∅ ≠ {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 3972 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snnz 3565 | . 2 ⊢ {∅} ≠ ∅ |
3 | 2 | necomi 2341 | 1 ⊢ ∅ ≠ {∅} |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2256 ∅c0 3287 {csn 3450 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-nul 3971 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-v 2622 df-dif 3002 df-nul 3288 df-sn 3456 |
This theorem is referenced by: 0inp0 4007 opthprc 4502 2dom 6576 exmidpw 6678 pw1dom2 12162 |
Copyright terms: Public domain | W3C validator |