Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0nep0 | GIF version |
Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
0nep0 | ⊢ ∅ ≠ {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4116 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snnz 3702 | . 2 ⊢ {∅} ≠ ∅ |
3 | 2 | necomi 2425 | 1 ⊢ ∅ ≠ {∅} |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2340 ∅c0 3414 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-nul 4115 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-v 2732 df-dif 3123 df-nul 3415 df-sn 3589 |
This theorem is referenced by: 0inp0 4152 opthprc 4662 2dom 6783 exmidpw 6886 exmidaclem 7185 pw1dom2 7204 |
Copyright terms: Public domain | W3C validator |