| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nep0 | GIF version | ||
| Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| 0nep0 | ⊢ ∅ ≠ {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4161 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | snnz 3742 | . 2 ⊢ {∅} ≠ ∅ |
| 3 | 2 | necomi 2452 | 1 ⊢ ∅ ≠ {∅} |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2367 ∅c0 3451 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4160 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-v 2765 df-dif 3159 df-nul 3452 df-sn 3629 |
| This theorem is referenced by: 0inp0 4200 opthprc 4715 2dom 6873 exmidpw 6978 exmidpw2en 6982 exmidaclem 7291 pw1dom2 7310 |
| Copyright terms: Public domain | W3C validator |