| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0nep0 | GIF version | ||
| Description: The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| 0nep0 | ⊢ ∅ ≠ {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4179 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | snnz 3757 | . 2 ⊢ {∅} ≠ ∅ |
| 3 | 2 | necomi 2462 | 1 ⊢ ∅ ≠ {∅} |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2377 ∅c0 3464 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-nul 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3172 df-nul 3465 df-sn 3644 |
| This theorem is referenced by: 0inp0 4218 opthprc 4734 2dom 6911 exmidpw 7020 exmidpw2en 7024 exmidaclem 7336 pw1dom2 7358 |
| Copyright terms: Public domain | W3C validator |