Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necomi | Unicode version |
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
necomi.1 |
Ref | Expression |
---|---|
necomi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomi.1 | . 2 | |
2 | necom 2424 | . 2 | |
3 | 1, 2 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-ne 2341 |
This theorem is referenced by: 0nep0 4151 xp01disj 6412 xp01disjl 6413 djulclb 7032 djuinr 7040 pnfnemnf 7974 mnfnepnf 7975 ltneii 8016 1ne0 8946 0ne2 9083 fzprval 10038 0tonninf 10395 1tonninf 10396 |
Copyright terms: Public domain | W3C validator |