![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necomi | Unicode version |
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
necomi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necomi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | necom 2448 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ne 2365 |
This theorem is referenced by: 0nep0 4195 xp01disj 6488 xp01disjl 6489 djulclb 7116 djuinr 7124 2oneel 7318 pnfnemnf 8076 mnfnepnf 8077 ltneii 8118 1ne0 9052 0ne2 9190 fzprval 10151 0tonninf 10514 1tonninf 10515 ressplusgd 12749 ressmulrg 12765 fnpr2o 12925 fvpr0o 12927 fvpr1o 12928 mgpress 13430 rmodislmod 13850 sralemg 13937 srascag 13941 sratsetg 13944 sradsg 13947 zlmbasg 14128 zlmplusgg 14129 zlmmulrg 14130 zlmsca 14131 znbas2 14139 znadd 14140 znmul 14141 |
Copyright terms: Public domain | W3C validator |