| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomi | Unicode version | ||
| Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
| Ref | Expression |
|---|---|
| necomi.1 |
|
| Ref | Expression |
|---|---|
| necomi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomi.1 |
. 2
| |
| 2 | necom 2451 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 |
| This theorem is referenced by: 0nep0 4199 xp01disj 6500 xp01disjl 6501 djulclb 7130 djuinr 7138 2oneel 7339 pnfnemnf 8098 mnfnepnf 8099 ltneii 8140 1ne0 9075 0ne2 9213 fzprval 10174 0tonninf 10549 1tonninf 10550 ressplusgd 12831 ressmulrg 12847 fnpr2o 13041 fvpr0o 13043 fvpr1o 13044 mgpress 13563 rmodislmod 13983 sralemg 14070 srascag 14074 sratsetg 14077 sradsg 14080 zlmbasg 14261 zlmplusgg 14262 zlmmulrg 14263 zlmsca 14264 znbas2 14272 znadd 14273 znmul 14274 |
| Copyright terms: Public domain | W3C validator |