| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > necomi | Unicode version | ||
| Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) | 
| Ref | Expression | 
|---|---|
| necomi.1 | 
 | 
| Ref | Expression | 
|---|---|
| necomi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | necomi.1 | 
. 2
 | |
| 2 | necom 2451 | 
. 2
 | |
| 3 | 1, 2 | mpbi 145 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 | 
| This theorem is referenced by: 0nep0 4198 xp01disj 6491 xp01disjl 6492 djulclb 7121 djuinr 7129 2oneel 7323 pnfnemnf 8081 mnfnepnf 8082 ltneii 8123 1ne0 9058 0ne2 9196 fzprval 10157 0tonninf 10532 1tonninf 10533 ressplusgd 12806 ressmulrg 12822 fnpr2o 12982 fvpr0o 12984 fvpr1o 12985 mgpress 13487 rmodislmod 13907 sralemg 13994 srascag 13998 sratsetg 14001 sradsg 14004 zlmbasg 14185 zlmplusgg 14186 zlmmulrg 14187 zlmsca 14188 znbas2 14196 znadd 14197 znmul 14198 | 
| Copyright terms: Public domain | W3C validator |