![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necomi | Unicode version |
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
necomi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necomi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | necom 2448 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ne 2365 |
This theorem is referenced by: 0nep0 4194 xp01disj 6486 xp01disjl 6487 djulclb 7114 djuinr 7122 2oneel 7316 pnfnemnf 8074 mnfnepnf 8075 ltneii 8116 1ne0 9050 0ne2 9187 fzprval 10148 0tonninf 10511 1tonninf 10512 ressplusgd 12746 ressmulrg 12762 fnpr2o 12922 fvpr0o 12924 fvpr1o 12925 mgpress 13427 rmodislmod 13847 sralemg 13934 srascag 13938 sratsetg 13941 sradsg 13944 zlmbasg 14117 zlmplusgg 14118 zlmmulrg 14119 zlmsca 14120 znbas2 14128 znadd 14129 znmul 14130 |
Copyright terms: Public domain | W3C validator |