| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomi | Unicode version | ||
| Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
| Ref | Expression |
|---|---|
| necomi.1 |
|
| Ref | Expression |
|---|---|
| necomi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomi.1 |
. 2
| |
| 2 | necom 2459 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1469 ax-gen 1471 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-ne 2376 |
| This theorem is referenced by: 0nep0 4208 xp01disj 6518 xp01disjl 6519 rex2dom 6909 djulclb 7156 djuinr 7164 2oneel 7367 pnfnemnf 8126 mnfnepnf 8127 ltneii 8168 1ne0 9103 0ne2 9241 fzprval 10203 0tonninf 10583 1tonninf 10584 ressplusgd 12932 ressmulrg 12948 fnpr2o 13142 fvpr0o 13144 fvpr1o 13145 mgpress 13664 rmodislmod 14084 sralemg 14171 srascag 14175 sratsetg 14178 sradsg 14181 zlmbasg 14362 zlmplusgg 14363 zlmmulrg 14364 zlmsca 14365 znbas2 14373 znadd 14374 znmul 14375 |
| Copyright terms: Public domain | W3C validator |