| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomi | Unicode version | ||
| Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
| Ref | Expression |
|---|---|
| necomi.1 |
|
| Ref | Expression |
|---|---|
| necomi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomi.1 |
. 2
| |
| 2 | necom 2484 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-ne 2401 |
| This theorem is referenced by: 0nep0 4248 xp01disj 6577 xp01disjl 6578 rex2dom 6969 djulclb 7218 djuinr 7226 2oneel 7438 pnfnemnf 8197 mnfnepnf 8198 ltneii 8239 1ne0 9174 0ne2 9312 fzprval 10274 0tonninf 10657 1tonninf 10658 ressplusgd 13157 ressmulrg 13173 fnpr2o 13367 fvpr0o 13369 fvpr1o 13370 mgpress 13889 rmodislmod 14309 sralemg 14396 srascag 14400 sratsetg 14403 sradsg 14406 zlmbasg 14587 zlmplusgg 14588 zlmmulrg 14589 zlmsca 14590 znbas2 14598 znadd 14599 znmul 14600 |
| Copyright terms: Public domain | W3C validator |