ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necomi Unicode version

Theorem necomi 2421
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.)
Hypothesis
Ref Expression
necomi.1  |-  A  =/= 
B
Assertion
Ref Expression
necomi  |-  B  =/= 
A

Proof of Theorem necomi
StepHypRef Expression
1 necomi.1 . 2  |-  A  =/= 
B
2 necom 2420 . 2  |-  ( A  =/=  B  <->  B  =/=  A )
31, 2mpbi 144 1  |-  B  =/= 
A
Colors of variables: wff set class
Syntax hints:    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-ne 2337
This theorem is referenced by:  0nep0  4144  xp01disj  6401  xp01disjl  6402  djulclb  7020  djuinr  7028  pnfnemnf  7953  mnfnepnf  7954  ltneii  7995  1ne0  8925  0ne2  9062  fzprval  10017  0tonninf  10374  1tonninf  10375
  Copyright terms: Public domain W3C validator