ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necomi Unicode version

Theorem necomi 2432
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.)
Hypothesis
Ref Expression
necomi.1  |-  A  =/= 
B
Assertion
Ref Expression
necomi  |-  B  =/= 
A

Proof of Theorem necomi
StepHypRef Expression
1 necomi.1 . 2  |-  A  =/= 
B
2 necom 2431 . 2  |-  ( A  =/=  B  <->  B  =/=  A )
31, 2mpbi 145 1  |-  B  =/= 
A
Colors of variables: wff set class
Syntax hints:    =/= wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-5 1447  ax-gen 1449  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-ne 2348
This theorem is referenced by:  0nep0  4167  xp01disj  6436  xp01disjl  6437  djulclb  7056  djuinr  7064  2oneel  7257  pnfnemnf  8014  mnfnepnf  8015  ltneii  8056  1ne0  8989  0ne2  9126  fzprval  10084  0tonninf  10441  1tonninf  10442  ressplusgd  12589  ressmulrg  12605  fnpr2o  12763  fvpr0o  12765  fvpr1o  12766  mgpress  13146  rmodislmod  13446
  Copyright terms: Public domain W3C validator