![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necomi | Unicode version |
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
necomi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necomi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | necom 2431 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbi 145 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-5 1447 ax-gen 1449 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-ne 2348 |
This theorem is referenced by: 0nep0 4167 xp01disj 6436 xp01disjl 6437 djulclb 7056 djuinr 7064 2oneel 7257 pnfnemnf 8014 mnfnepnf 8015 ltneii 8056 1ne0 8989 0ne2 9126 fzprval 10084 0tonninf 10441 1tonninf 10442 ressplusgd 12589 ressmulrg 12605 fnpr2o 12763 fvpr0o 12765 fvpr1o 12766 mgpress 13146 rmodislmod 13446 |
Copyright terms: Public domain | W3C validator |