Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necomi | Unicode version |
Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
Ref | Expression |
---|---|
necomi.1 |
Ref | Expression |
---|---|
necomi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomi.1 | . 2 | |
2 | necom 2411 | . 2 | |
3 | 1, 2 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wne 2327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1427 ax-gen 1429 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 df-ne 2328 |
This theorem is referenced by: 0nep0 4127 xp01disj 6381 xp01disjl 6382 djulclb 7000 djuinr 7008 pnfnemnf 7933 mnfnepnf 7934 ltneii 7974 1ne0 8902 0ne2 9039 fzprval 9985 0tonninf 10342 1tonninf 10343 |
Copyright terms: Public domain | W3C validator |