| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomi | Unicode version | ||
| Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
| Ref | Expression |
|---|---|
| necomi.1 |
|
| Ref | Expression |
|---|---|
| necomi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomi.1 |
. 2
| |
| 2 | necom 2460 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1470 ax-gen 1472 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-ne 2377 |
| This theorem is referenced by: 0nep0 4209 xp01disj 6519 xp01disjl 6520 rex2dom 6910 djulclb 7157 djuinr 7165 2oneel 7368 pnfnemnf 8127 mnfnepnf 8128 ltneii 8169 1ne0 9104 0ne2 9242 fzprval 10204 0tonninf 10585 1tonninf 10586 ressplusgd 12961 ressmulrg 12977 fnpr2o 13171 fvpr0o 13173 fvpr1o 13174 mgpress 13693 rmodislmod 14113 sralemg 14200 srascag 14204 sratsetg 14207 sradsg 14210 zlmbasg 14391 zlmplusgg 14392 zlmmulrg 14393 zlmsca 14394 znbas2 14402 znadd 14403 znmul 14404 |
| Copyright terms: Public domain | W3C validator |