| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necomi | Unicode version | ||
| Description: Inference from commutative law for inequality. (Contributed by NM, 17-Oct-2012.) |
| Ref | Expression |
|---|---|
| necomi.1 |
|
| Ref | Expression |
|---|---|
| necomi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necomi.1 |
. 2
| |
| 2 | necom 2462 |
. 2
| |
| 3 | 1, 2 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-ne 2379 |
| This theorem is referenced by: 0nep0 4225 xp01disj 6542 xp01disjl 6543 rex2dom 6934 djulclb 7183 djuinr 7191 2oneel 7403 pnfnemnf 8162 mnfnepnf 8163 ltneii 8204 1ne0 9139 0ne2 9277 fzprval 10239 0tonninf 10622 1tonninf 10623 ressplusgd 13076 ressmulrg 13092 fnpr2o 13286 fvpr0o 13288 fvpr1o 13289 mgpress 13808 rmodislmod 14228 sralemg 14315 srascag 14319 sratsetg 14322 sradsg 14325 zlmbasg 14506 zlmplusgg 14507 zlmmulrg 14508 zlmsca 14509 znbas2 14517 znadd 14518 znmul 14519 |
| Copyright terms: Public domain | W3C validator |