| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2dom | Unicode version | ||
| Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o2 6517 |
. . . 4
| |
| 2 | 1 | breq1i 4051 |
. . 3
|
| 3 | brdomi 6838 |
. . 3
| |
| 4 | 2, 3 | sylbi 121 |
. 2
|
| 5 | f1f 5481 |
. . . . 5
| |
| 6 | 0ex 4171 |
. . . . . 6
| |
| 7 | 6 | prid1 3739 |
. . . . 5
|
| 8 | ffvelcdm 5713 |
. . . . 5
| |
| 9 | 5, 7, 8 | sylancl 413 |
. . . 4
|
| 10 | p0ex 4232 |
. . . . . 6
| |
| 11 | 10 | prid2 3740 |
. . . . 5
|
| 12 | ffvelcdm 5713 |
. . . . 5
| |
| 13 | 5, 11, 12 | sylancl 413 |
. . . 4
|
| 14 | 0nep0 4209 |
. . . . . 6
| |
| 15 | 14 | neii 2378 |
. . . . 5
|
| 16 | f1fveq 5841 |
. . . . . 6
| |
| 17 | 7, 11, 16 | mpanr12 439 |
. . . . 5
|
| 18 | 15, 17 | mtbiri 677 |
. . . 4
|
| 19 | eqeq1 2212 |
. . . . . 6
| |
| 20 | 19 | notbid 669 |
. . . . 5
|
| 21 | eqeq2 2215 |
. . . . . 6
| |
| 22 | 21 | notbid 669 |
. . . . 5
|
| 23 | 20, 22 | rspc2ev 2892 |
. . . 4
|
| 24 | 9, 13, 18, 23 | syl3anc 1250 |
. . 3
|
| 25 | 24 | exlimiv 1621 |
. 2
|
| 26 | 4, 25 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fv 5279 df-1o 6502 df-2o 6503 df-dom 6829 |
| This theorem is referenced by: fundm2domnop0 10990 isnzr2 13946 |
| Copyright terms: Public domain | W3C validator |