ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2dom Unicode version

Theorem 2dom 6859
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
2dom  |-  ( 2o  ~<_  A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
Distinct variable group:    x, y, A

Proof of Theorem 2dom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df2o2 6484 . . . 4  |-  2o  =  { (/) ,  { (/) } }
21breq1i 4036 . . 3  |-  ( 2o  ~<_  A  <->  { (/) ,  { (/) } }  ~<_  A )
3 brdomi 6803 . . 3  |-  ( {
(/) ,  { (/) } }  ~<_  A  ->  E. f  f : { (/) ,  { (/) } } -1-1-> A )
42, 3sylbi 121 . 2  |-  ( 2o  ~<_  A  ->  E. f 
f : { (/) ,  { (/) } } -1-1-> A
)
5 f1f 5459 . . . . 5  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
f : { (/) ,  { (/) } } --> A )
6 0ex 4156 . . . . . 6  |-  (/)  e.  _V
76prid1 3724 . . . . 5  |-  (/)  e.  { (/)
,  { (/) } }
8 ffvelcdm 5691 . . . . 5  |-  ( ( f : { (/) ,  { (/) } } --> A  /\  (/) 
e.  { (/) ,  { (/)
} } )  -> 
( f `  (/) )  e.  A )
95, 7, 8sylancl 413 . . . 4  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
( f `  (/) )  e.  A )
10 p0ex 4217 . . . . . 6  |-  { (/) }  e.  _V
1110prid2 3725 . . . . 5  |-  { (/) }  e.  { (/) ,  { (/)
} }
12 ffvelcdm 5691 . . . . 5  |-  ( ( f : { (/) ,  { (/) } } --> A  /\  {
(/) }  e.  { (/) ,  { (/) } } )  ->  ( f `  { (/) } )  e.  A )
135, 11, 12sylancl 413 . . . 4  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
( f `  { (/)
} )  e.  A
)
14 0nep0 4194 . . . . . 6  |-  (/)  =/=  { (/)
}
1514neii 2366 . . . . 5  |-  -.  (/)  =  { (/)
}
16 f1fveq 5815 . . . . . 6  |-  ( ( f : { (/) ,  { (/) } } -1-1-> A  /\  ( (/)  e.  { (/) ,  { (/) } }  /\  {
(/) }  e.  { (/) ,  { (/) } } ) )  ->  ( (
f `  (/) )  =  ( f `  { (/)
} )  <->  (/)  =  { (/)
} ) )
177, 11, 16mpanr12 439 . . . . 5  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
( ( f `  (/) )  =  ( f `
 { (/) } )  <->  (/)  =  { (/) } ) )
1815, 17mtbiri 676 . . . 4  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  ->  -.  ( f `  (/) )  =  ( f `  { (/)
} ) )
19 eqeq1 2200 . . . . . 6  |-  ( x  =  ( f `  (/) )  ->  ( x  =  y  <->  ( f `  (/) )  =  y ) )
2019notbid 668 . . . . 5  |-  ( x  =  ( f `  (/) )  ->  ( -.  x  =  y  <->  -.  (
f `  (/) )  =  y ) )
21 eqeq2 2203 . . . . . 6  |-  ( y  =  ( f `  { (/) } )  -> 
( ( f `  (/) )  =  y  <->  ( f `  (/) )  =  ( f `  { (/) } ) ) )
2221notbid 668 . . . . 5  |-  ( y  =  ( f `  { (/) } )  -> 
( -.  ( f `
 (/) )  =  y  <->  -.  ( f `  (/) )  =  ( f `  { (/)
} ) ) )
2320, 22rspc2ev 2879 . . . 4  |-  ( ( ( f `  (/) )  e.  A  /\  ( f `
 { (/) } )  e.  A  /\  -.  ( f `  (/) )  =  ( f `  { (/)
} ) )  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y
)
249, 13, 18, 23syl3anc 1249 . . 3  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y
)
2524exlimiv 1609 . 2  |-  ( E. f  f : { (/)
,  { (/) } } -1-1->
A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
264, 25syl 14 1  |-  ( 2o  ~<_  A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   (/)c0 3446   {csn 3618   {cpr 3619   class class class wbr 4029   -->wf 5250   -1-1->wf1 5251   ` cfv 5254   2oc2o 6463    ~<_ cdom 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fv 5262  df-1o 6469  df-2o 6470  df-dom 6796
This theorem is referenced by:  isnzr2  13680
  Copyright terms: Public domain W3C validator