Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2dom | Unicode version |
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.) |
Ref | Expression |
---|---|
2dom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o2 6399 | . . . 4 | |
2 | 1 | breq1i 3989 | . . 3 |
3 | brdomi 6715 | . . 3 | |
4 | 2, 3 | sylbi 120 | . 2 |
5 | f1f 5393 | . . . . 5 | |
6 | 0ex 4109 | . . . . . 6 | |
7 | 6 | prid1 3682 | . . . . 5 |
8 | ffvelrn 5618 | . . . . 5 | |
9 | 5, 7, 8 | sylancl 410 | . . . 4 |
10 | p0ex 4167 | . . . . . 6 | |
11 | 10 | prid2 3683 | . . . . 5 |
12 | ffvelrn 5618 | . . . . 5 | |
13 | 5, 11, 12 | sylancl 410 | . . . 4 |
14 | 0nep0 4144 | . . . . . 6 | |
15 | 14 | neii 2338 | . . . . 5 |
16 | f1fveq 5740 | . . . . . 6 | |
17 | 7, 11, 16 | mpanr12 436 | . . . . 5 |
18 | 15, 17 | mtbiri 665 | . . . 4 |
19 | eqeq1 2172 | . . . . . 6 | |
20 | 19 | notbid 657 | . . . . 5 |
21 | eqeq2 2175 | . . . . . 6 | |
22 | 21 | notbid 657 | . . . . 5 |
23 | 20, 22 | rspc2ev 2845 | . . . 4 |
24 | 9, 13, 18, 23 | syl3anc 1228 | . . 3 |
25 | 24 | exlimiv 1586 | . 2 |
26 | 4, 25 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wceq 1343 wex 1480 wcel 2136 wrex 2445 c0 3409 csn 3576 cpr 3577 class class class wbr 3982 wf 5184 wf1 5185 cfv 5188 c2o 6378 cdom 6705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fv 5196 df-1o 6384 df-2o 6385 df-dom 6708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |