ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2dom Unicode version

Theorem 2dom 6783
Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
2dom  |-  ( 2o  ~<_  A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
Distinct variable group:    x, y, A

Proof of Theorem 2dom
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df2o2 6410 . . . 4  |-  2o  =  { (/) ,  { (/) } }
21breq1i 3996 . . 3  |-  ( 2o  ~<_  A  <->  { (/) ,  { (/) } }  ~<_  A )
3 brdomi 6727 . . 3  |-  ( {
(/) ,  { (/) } }  ~<_  A  ->  E. f  f : { (/) ,  { (/) } } -1-1-> A )
42, 3sylbi 120 . 2  |-  ( 2o  ~<_  A  ->  E. f 
f : { (/) ,  { (/) } } -1-1-> A
)
5 f1f 5403 . . . . 5  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
f : { (/) ,  { (/) } } --> A )
6 0ex 4116 . . . . . 6  |-  (/)  e.  _V
76prid1 3689 . . . . 5  |-  (/)  e.  { (/)
,  { (/) } }
8 ffvelrn 5629 . . . . 5  |-  ( ( f : { (/) ,  { (/) } } --> A  /\  (/) 
e.  { (/) ,  { (/)
} } )  -> 
( f `  (/) )  e.  A )
95, 7, 8sylancl 411 . . . 4  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
( f `  (/) )  e.  A )
10 p0ex 4174 . . . . . 6  |-  { (/) }  e.  _V
1110prid2 3690 . . . . 5  |-  { (/) }  e.  { (/) ,  { (/)
} }
12 ffvelrn 5629 . . . . 5  |-  ( ( f : { (/) ,  { (/) } } --> A  /\  {
(/) }  e.  { (/) ,  { (/) } } )  ->  ( f `  { (/) } )  e.  A )
135, 11, 12sylancl 411 . . . 4  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
( f `  { (/)
} )  e.  A
)
14 0nep0 4151 . . . . . 6  |-  (/)  =/=  { (/)
}
1514neii 2342 . . . . 5  |-  -.  (/)  =  { (/)
}
16 f1fveq 5751 . . . . . 6  |-  ( ( f : { (/) ,  { (/) } } -1-1-> A  /\  ( (/)  e.  { (/) ,  { (/) } }  /\  {
(/) }  e.  { (/) ,  { (/) } } ) )  ->  ( (
f `  (/) )  =  ( f `  { (/)
} )  <->  (/)  =  { (/)
} ) )
177, 11, 16mpanr12 437 . . . . 5  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  -> 
( ( f `  (/) )  =  ( f `
 { (/) } )  <->  (/)  =  { (/) } ) )
1815, 17mtbiri 670 . . . 4  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  ->  -.  ( f `  (/) )  =  ( f `  { (/)
} ) )
19 eqeq1 2177 . . . . . 6  |-  ( x  =  ( f `  (/) )  ->  ( x  =  y  <->  ( f `  (/) )  =  y ) )
2019notbid 662 . . . . 5  |-  ( x  =  ( f `  (/) )  ->  ( -.  x  =  y  <->  -.  (
f `  (/) )  =  y ) )
21 eqeq2 2180 . . . . . 6  |-  ( y  =  ( f `  { (/) } )  -> 
( ( f `  (/) )  =  y  <->  ( f `  (/) )  =  ( f `  { (/) } ) ) )
2221notbid 662 . . . . 5  |-  ( y  =  ( f `  { (/) } )  -> 
( -.  ( f `
 (/) )  =  y  <->  -.  ( f `  (/) )  =  ( f `  { (/)
} ) ) )
2320, 22rspc2ev 2849 . . . 4  |-  ( ( ( f `  (/) )  e.  A  /\  ( f `
 { (/) } )  e.  A  /\  -.  ( f `  (/) )  =  ( f `  { (/)
} ) )  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y
)
249, 13, 18, 23syl3anc 1233 . . 3  |-  ( f : { (/) ,  { (/)
} } -1-1-> A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y
)
2524exlimiv 1591 . 2  |-  ( E. f  f : { (/)
,  { (/) } } -1-1->
A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
264, 25syl 14 1  |-  ( 2o  ~<_  A  ->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449   (/)c0 3414   {csn 3583   {cpr 3584   class class class wbr 3989   -->wf 5194   -1-1->wf1 5195   ` cfv 5198   2oc2o 6389    ~<_ cdom 6717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fv 5206  df-1o 6395  df-2o 6396  df-dom 6720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator