| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2dom | Unicode version | ||
| Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o2 6540 |
. . . 4
| |
| 2 | 1 | breq1i 4066 |
. . 3
|
| 3 | brdomi 6861 |
. . 3
| |
| 4 | 2, 3 | sylbi 121 |
. 2
|
| 5 | f1f 5503 |
. . . . 5
| |
| 6 | 0ex 4187 |
. . . . . 6
| |
| 7 | 6 | prid1 3749 |
. . . . 5
|
| 8 | ffvelcdm 5736 |
. . . . 5
| |
| 9 | 5, 7, 8 | sylancl 413 |
. . . 4
|
| 10 | p0ex 4248 |
. . . . . 6
| |
| 11 | 10 | prid2 3750 |
. . . . 5
|
| 12 | ffvelcdm 5736 |
. . . . 5
| |
| 13 | 5, 11, 12 | sylancl 413 |
. . . 4
|
| 14 | 0nep0 4225 |
. . . . . 6
| |
| 15 | 14 | neii 2380 |
. . . . 5
|
| 16 | f1fveq 5864 |
. . . . . 6
| |
| 17 | 7, 11, 16 | mpanr12 439 |
. . . . 5
|
| 18 | 15, 17 | mtbiri 677 |
. . . 4
|
| 19 | eqeq1 2214 |
. . . . . 6
| |
| 20 | 19 | notbid 669 |
. . . . 5
|
| 21 | eqeq2 2217 |
. . . . . 6
| |
| 22 | 21 | notbid 669 |
. . . . 5
|
| 23 | 20, 22 | rspc2ev 2899 |
. . . 4
|
| 24 | 9, 13, 18, 23 | syl3anc 1250 |
. . 3
|
| 25 | 24 | exlimiv 1622 |
. 2
|
| 26 | 4, 25 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fv 5298 df-1o 6525 df-2o 6526 df-dom 6852 |
| This theorem is referenced by: fundm2domnop0 11027 isnzr2 14061 |
| Copyright terms: Public domain | W3C validator |