ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbrex Unicode version

Theorem opabbrex 5991
Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
Hypotheses
Ref Expression
opabbrex.1  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( f ( V W E ) p  ->  th ) )
opabbrex.2  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  th }  e.  _V )
Assertion
Ref Expression
opabbrex  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  ( f ( V W E ) p  /\  ps ) }  e.  _V )
Distinct variable groups:    f, E, p   
f, V, p
Allowed substitution hints:    ps( f, p)    th( f, p)    W( f, p)

Proof of Theorem opabbrex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-opab 4107 . . 3  |-  { <. f ,  p >.  |  th }  =  { z  |  E. f E. p
( z  =  <. f ,  p >.  /\  th ) }
2 opabbrex.2 . . 3  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  th }  e.  _V )
31, 2eqeltrrid 2293 . 2  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { z  |  E. f E. p ( z  =  <. f ,  p >.  /\  th ) }  e.  _V )
4 df-opab 4107 . . 3  |-  { <. f ,  p >.  |  ( f ( V W E ) p  /\  ps ) }  =  {
z  |  E. f E. p ( z  = 
<. f ,  p >.  /\  ( f ( V W E ) p  /\  ps ) ) }
5 opabbrex.1 . . . . . . 7  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( f ( V W E ) p  ->  th ) )
65adantrd 279 . . . . . 6  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( f ( V W E ) p  /\  ps )  ->  th ) )
76anim2d 337 . . . . 5  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( z  = 
<. f ,  p >.  /\  ( f ( V W E ) p  /\  ps ) )  ->  ( z  = 
<. f ,  p >.  /\ 
th ) ) )
872eximdv 1905 . . . 4  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( E. f E. p ( z  = 
<. f ,  p >.  /\  ( f ( V W E ) p  /\  ps ) )  ->  E. f E. p
( z  =  <. f ,  p >.  /\  th ) ) )
98ss2abdv 3266 . . 3  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { z  |  E. f E. p ( z  =  <. f ,  p >.  /\  ( f ( V W E ) p  /\  ps )
) }  C_  { z  |  E. f E. p ( z  = 
<. f ,  p >.  /\ 
th ) } )
104, 9eqsstrid 3239 . 2  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  ( f ( V W E ) p  /\  ps ) }  C_  { z  |  E. f E. p
( z  =  <. f ,  p >.  /\  th ) } )
113, 10ssexd 4185 1  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  ( f ( V W E ) p  /\  ps ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   _Vcvv 2772   <.cop 3636   class class class wbr 4045   {copab 4105  (class class class)co 5946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4163
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-opab 4107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator