ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbrex Unicode version

Theorem opabbrex 5897
Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
Hypotheses
Ref Expression
opabbrex.1  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( f ( V W E ) p  ->  th ) )
opabbrex.2  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  th }  e.  _V )
Assertion
Ref Expression
opabbrex  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  ( f ( V W E ) p  /\  ps ) }  e.  _V )
Distinct variable groups:    f, E, p   
f, V, p
Allowed substitution hints:    ps( f, p)    th( f, p)    W( f, p)

Proof of Theorem opabbrex
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-opab 4051 . . 3  |-  { <. f ,  p >.  |  th }  =  { z  |  E. f E. p
( z  =  <. f ,  p >.  /\  th ) }
2 opabbrex.2 . . 3  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  th }  e.  _V )
31, 2eqeltrrid 2258 . 2  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { z  |  E. f E. p ( z  =  <. f ,  p >.  /\  th ) }  e.  _V )
4 df-opab 4051 . . 3  |-  { <. f ,  p >.  |  ( f ( V W E ) p  /\  ps ) }  =  {
z  |  E. f E. p ( z  = 
<. f ,  p >.  /\  ( f ( V W E ) p  /\  ps ) ) }
5 opabbrex.1 . . . . . . 7  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( f ( V W E ) p  ->  th ) )
65adantrd 277 . . . . . 6  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( f ( V W E ) p  /\  ps )  ->  th ) )
76anim2d 335 . . . . 5  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( z  = 
<. f ,  p >.  /\  ( f ( V W E ) p  /\  ps ) )  ->  ( z  = 
<. f ,  p >.  /\ 
th ) ) )
872eximdv 1875 . . . 4  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( E. f E. p ( z  = 
<. f ,  p >.  /\  ( f ( V W E ) p  /\  ps ) )  ->  E. f E. p
( z  =  <. f ,  p >.  /\  th ) ) )
98ss2abdv 3220 . . 3  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { z  |  E. f E. p ( z  =  <. f ,  p >.  /\  ( f ( V W E ) p  /\  ps )
) }  C_  { z  |  E. f E. p ( z  = 
<. f ,  p >.  /\ 
th ) } )
104, 9eqsstrid 3193 . 2  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  ( f ( V W E ) p  /\  ps ) }  C_  { z  |  E. f E. p
( z  =  <. f ,  p >.  /\  th ) } )
113, 10ssexd 4129 1  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  ( f ( V W E ) p  /\  ps ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156   _Vcvv 2730   <.cop 3586   class class class wbr 3989   {copab 4049  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-opab 4051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator