| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opabbrex | Unicode version | ||
| Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) |
| Ref | Expression |
|---|---|
| opabbrex.1 |
|
| opabbrex.2 |
|
| Ref | Expression |
|---|---|
| opabbrex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 4146 |
. . 3
| |
| 2 | opabbrex.2 |
. . 3
| |
| 3 | 1, 2 | eqeltrrid 2317 |
. 2
|
| 4 | df-opab 4146 |
. . 3
| |
| 5 | opabbrex.1 |
. . . . . . 7
| |
| 6 | 5 | adantrd 279 |
. . . . . 6
|
| 7 | 6 | anim2d 337 |
. . . . 5
|
| 8 | 7 | 2eximdv 1928 |
. . . 4
|
| 9 | 8 | ss2abdv 3297 |
. . 3
|
| 10 | 4, 9 | eqsstrid 3270 |
. 2
|
| 11 | 3, 10 | ssexd 4224 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-opab 4146 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |