ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elres Unicode version

Theorem elres 4863
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.)
Assertion
Ref Expression
elres  |-  ( A  e.  ( B  |`  C )  <->  E. x  e.  C  E. y
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem elres
StepHypRef Expression
1 relres 4855 . . . . 5  |-  Rel  ( B  |`  C )
2 elrel 4649 . . . . 5  |-  ( ( Rel  ( B  |`  C )  /\  A  e.  ( B  |`  C ) )  ->  E. x E. y  A  =  <. x ,  y >.
)
31, 2mpan 421 . . . 4  |-  ( A  e.  ( B  |`  C )  ->  E. x E. y  A  =  <. x ,  y >.
)
4 eleq1 2203 . . . . . . . . 9  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  ( B  |`  C )  <->  <. x ,  y >.  e.  ( B  |`  C ) ) )
54biimpd 143 . . . . . . . 8  |-  ( A  =  <. x ,  y
>.  ->  ( A  e.  ( B  |`  C )  ->  <. x ,  y
>.  e.  ( B  |`  C ) ) )
6 vex 2692 . . . . . . . . . . 11  |-  y  e. 
_V
76opelres 4832 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( B  |`  C )  <-> 
( <. x ,  y
>.  e.  B  /\  x  e.  C ) )
87biimpi 119 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( B  |`  C )  ->  ( <. x ,  y >.  e.  B  /\  x  e.  C
) )
98ancomd 265 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( B  |`  C )  ->  ( x  e.  C  /\  <. x ,  y >.  e.  B
) )
105, 9syl6com 35 . . . . . . 7  |-  ( A  e.  ( B  |`  C )  ->  ( A  =  <. x ,  y >.  ->  ( x  e.  C  /\  <. x ,  y >.  e.  B
) ) )
1110ancld 323 . . . . . 6  |-  ( A  e.  ( B  |`  C )  ->  ( A  =  <. x ,  y >.  ->  ( A  =  <. x ,  y
>.  /\  ( x  e.  C  /\  <. x ,  y >.  e.  B
) ) ) )
12 an12 551 . . . . . 6  |-  ( ( A  =  <. x ,  y >.  /\  (
x  e.  C  /\  <.
x ,  y >.  e.  B ) )  <->  ( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) ) )
1311, 12syl6ib 160 . . . . 5  |-  ( A  e.  ( B  |`  C )  ->  ( A  =  <. x ,  y >.  ->  ( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) ) ) )
14132eximdv 1855 . . . 4  |-  ( A  e.  ( B  |`  C )  ->  ( E. x E. y  A  =  <. x ,  y
>.  ->  E. x E. y
( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) ) ) )
153, 14mpd 13 . . 3  |-  ( A  e.  ( B  |`  C )  ->  E. x E. y ( x  e.  C  /\  ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B ) ) )
16 rexcom4 2712 . . . 4  |-  ( E. x  e.  C  E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  <->  E. y E. x  e.  C  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )
17 df-rex 2423 . . . . 5  |-  ( E. x  e.  C  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
)  <->  E. x ( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) ) )
1817exbii 1585 . . . 4  |-  ( E. y E. x  e.  C  ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  <->  E. y E. x ( x  e.  C  /\  ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B ) ) )
19 excom 1643 . . . 4  |-  ( E. y E. x ( x  e.  C  /\  ( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )  <->  E. x E. y ( x  e.  C  /\  ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B ) ) )
2016, 18, 193bitri 205 . . 3  |-  ( E. x  e.  C  E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  <->  E. x E. y ( x  e.  C  /\  ( A  =  <. x ,  y
>.  /\  <. x ,  y
>.  e.  B ) ) )
2115, 20sylibr 133 . 2  |-  ( A  e.  ( B  |`  C )  ->  E. x  e.  C  E. y
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )
227simplbi2com 1421 . . . . . 6  |-  ( x  e.  C  ->  ( <. x ,  y >.  e.  B  ->  <. x ,  y >.  e.  ( B  |`  C )
) )
234biimprd 157 . . . . . 6  |-  ( A  =  <. x ,  y
>.  ->  ( <. x ,  y >.  e.  ( B  |`  C )  ->  A  e.  ( B  |`  C ) ) )
2422, 23syl9 72 . . . . 5  |-  ( x  e.  C  ->  ( A  =  <. x ,  y >.  ->  ( <.
x ,  y >.  e.  B  ->  A  e.  ( B  |`  C ) ) ) )
2524impd 252 . . . 4  |-  ( x  e.  C  ->  (
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
)  ->  A  e.  ( B  |`  C ) ) )
2625exlimdv 1792 . . 3  |-  ( x  e.  C  ->  ( E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  ->  A  e.  ( B  |`  C ) ) )
2726rexlimiv 2546 . 2  |-  ( E. x  e.  C  E. y ( A  = 
<. x ,  y >.  /\  <. x ,  y
>.  e.  B )  ->  A  e.  ( B  |`  C ) )
2821, 27impbii 125 1  |-  ( A  e.  ( B  |`  C )  <->  E. x  e.  C  E. y
( A  =  <. x ,  y >.  /\  <. x ,  y >.  e.  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 1481   E.wrex 2418   <.cop 3535    |` cres 4549   Rel wrel 4552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-opab 3998  df-xp 4553  df-rel 4554  df-res 4559
This theorem is referenced by:  elsnres  4864
  Copyright terms: Public domain W3C validator