Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elres | Unicode version |
Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) |
Ref | Expression |
---|---|
elres |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4912 | . . . . 5 | |
2 | elrel 4706 | . . . . 5 | |
3 | 1, 2 | mpan 421 | . . . 4 |
4 | eleq1 2229 | . . . . . . . . 9 | |
5 | 4 | biimpd 143 | . . . . . . . 8 |
6 | vex 2729 | . . . . . . . . . . 11 | |
7 | 6 | opelres 4889 | . . . . . . . . . 10 |
8 | 7 | biimpi 119 | . . . . . . . . 9 |
9 | 8 | ancomd 265 | . . . . . . . 8 |
10 | 5, 9 | syl6com 35 | . . . . . . 7 |
11 | 10 | ancld 323 | . . . . . 6 |
12 | an12 551 | . . . . . 6 | |
13 | 11, 12 | syl6ib 160 | . . . . 5 |
14 | 13 | 2eximdv 1870 | . . . 4 |
15 | 3, 14 | mpd 13 | . . 3 |
16 | rexcom4 2749 | . . . 4 | |
17 | df-rex 2450 | . . . . 5 | |
18 | 17 | exbii 1593 | . . . 4 |
19 | excom 1652 | . . . 4 | |
20 | 16, 18, 19 | 3bitri 205 | . . 3 |
21 | 15, 20 | sylibr 133 | . 2 |
22 | 7 | simplbi2com 1432 | . . . . . 6 |
23 | 4 | biimprd 157 | . . . . . 6 |
24 | 22, 23 | syl9 72 | . . . . 5 |
25 | 24 | impd 252 | . . . 4 |
26 | 25 | exlimdv 1807 | . . 3 |
27 | 26 | rexlimiv 2577 | . 2 |
28 | 21, 27 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wrex 2445 cop 3579 cres 4606 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 df-rel 4611 df-res 4616 |
This theorem is referenced by: elsnres 4921 |
Copyright terms: Public domain | W3C validator |