| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elres | Unicode version | ||
| Description: Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.) |
| Ref | Expression |
|---|---|
| elres |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 4974 |
. . . . 5
| |
| 2 | elrel 4765 |
. . . . 5
| |
| 3 | 1, 2 | mpan 424 |
. . . 4
|
| 4 | eleq1 2259 |
. . . . . . . . 9
| |
| 5 | 4 | biimpd 144 |
. . . . . . . 8
|
| 6 | vex 2766 |
. . . . . . . . . . 11
| |
| 7 | 6 | opelres 4951 |
. . . . . . . . . 10
|
| 8 | 7 | biimpi 120 |
. . . . . . . . 9
|
| 9 | 8 | ancomd 267 |
. . . . . . . 8
|
| 10 | 5, 9 | syl6com 35 |
. . . . . . 7
|
| 11 | 10 | ancld 325 |
. . . . . 6
|
| 12 | an12 561 |
. . . . . 6
| |
| 13 | 11, 12 | imbitrdi 161 |
. . . . 5
|
| 14 | 13 | 2eximdv 1896 |
. . . 4
|
| 15 | 3, 14 | mpd 13 |
. . 3
|
| 16 | rexcom4 2786 |
. . . 4
| |
| 17 | df-rex 2481 |
. . . . 5
| |
| 18 | 17 | exbii 1619 |
. . . 4
|
| 19 | excom 1678 |
. . . 4
| |
| 20 | 16, 18, 19 | 3bitri 206 |
. . 3
|
| 21 | 15, 20 | sylibr 134 |
. 2
|
| 22 | 7 | simplbi2com 1455 |
. . . . . 6
|
| 23 | 4 | biimprd 158 |
. . . . . 6
|
| 24 | 22, 23 | syl9 72 |
. . . . 5
|
| 25 | 24 | impd 254 |
. . . 4
|
| 26 | 25 | exlimdv 1833 |
. . 3
|
| 27 | 26 | rexlimiv 2608 |
. 2
|
| 28 | 21, 27 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 df-rel 4670 df-res 4675 |
| This theorem is referenced by: elsnres 4983 |
| Copyright terms: Public domain | W3C validator |