ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr3i Unicode version

Theorem 3brtr3i 3902
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
3brtr3.1  |-  A R B
3brtr3.2  |-  A  =  C
3brtr3.3  |-  B  =  D
Assertion
Ref Expression
3brtr3i  |-  C R D

Proof of Theorem 3brtr3i
StepHypRef Expression
1 3brtr3.2 . . 3  |-  A  =  C
2 3brtr3.1 . . 3  |-  A R B
31, 2eqbrtrri 3896 . 2  |-  C R B
4 3brtr3.3 . 2  |-  B  =  D
53, 4breqtri 3898 1  |-  C R D
Colors of variables: wff set class
Syntax hints:    = wceq 1299   class class class wbr 3875
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876
This theorem is referenced by:  iap0  8795  ef01bndlem  11261
  Copyright terms: Public domain W3C validator