| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4i | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3brtr4.1 |
|
| 3brtr4.2 |
|
| 3brtr4.3 |
|
| Ref | Expression |
|---|---|
| 3brtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4.2 |
. . 3
| |
| 2 | 3brtr4.1 |
. . 3
| |
| 3 | 1, 2 | eqbrtri 4066 |
. 2
|
| 4 | 3brtr4.3 |
. 2
| |
| 5 | 3, 4 | breqtrri 4072 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 |
| This theorem is referenced by: 1lt2nq 7521 0lt1sr 7880 ax0lt1 7991 declt 9533 decltc 9534 decle 9539 frecfzennn 10573 fsumabs 11809 basendxltplusgndx 12978 2strbasg 12985 2stropg 12986 basendxlttsetndx 13055 basendxltplendx 13069 basendxltdsndx 13084 basendxltunifndx 13094 basendxltedgfndx 15642 |
| Copyright terms: Public domain | W3C validator |