ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr4i Unicode version

Theorem 3brtr4i 4019
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
3brtr4.1  |-  A R B
3brtr4.2  |-  C  =  A
3brtr4.3  |-  D  =  B
Assertion
Ref Expression
3brtr4i  |-  C R D

Proof of Theorem 3brtr4i
StepHypRef Expression
1 3brtr4.2 . . 3  |-  C  =  A
2 3brtr4.1 . . 3  |-  A R B
31, 2eqbrtri 4010 . 2  |-  C R B
4 3brtr4.3 . 2  |-  D  =  B
53, 4breqtrri 4016 1  |-  C R D
Colors of variables: wff set class
Syntax hints:    = wceq 1348   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990
This theorem is referenced by:  1lt2nq  7368  0lt1sr  7727  ax0lt1  7838  declt  9370  decltc  9371  decle  9376  frecfzennn  10382  fsumabs  11428  2strbasg  12519  2stropg  12520
  Copyright terms: Public domain W3C validator