ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr4i Unicode version

Theorem 3brtr4i 4113
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
3brtr4.1  |-  A R B
3brtr4.2  |-  C  =  A
3brtr4.3  |-  D  =  B
Assertion
Ref Expression
3brtr4i  |-  C R D

Proof of Theorem 3brtr4i
StepHypRef Expression
1 3brtr4.2 . . 3  |-  C  =  A
2 3brtr4.1 . . 3  |-  A R B
31, 2eqbrtri 4104 . 2  |-  C R B
4 3brtr4.3 . 2  |-  D  =  B
53, 4breqtrri 4110 1  |-  C R D
Colors of variables: wff set class
Syntax hints:    = wceq 1395   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084
This theorem is referenced by:  1lt2nq  7593  0lt1sr  7952  ax0lt1  8063  declt  9605  decltc  9606  decle  9611  frecfzennn  10648  fsumabs  11976  basendxltplusgndx  13146  2strbasg  13153  2stropg  13154  basendxlttsetndx  13223  basendxltplendx  13237  basendxltdsndx  13252  basendxltunifndx  13262  basendxltedgfndx  15811
  Copyright terms: Public domain W3C validator