| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4i | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3brtr4.1 |
|
| 3brtr4.2 |
|
| 3brtr4.3 |
|
| Ref | Expression |
|---|---|
| 3brtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4.2 |
. . 3
| |
| 2 | 3brtr4.1 |
. . 3
| |
| 3 | 1, 2 | eqbrtri 4104 |
. 2
|
| 4 | 3brtr4.3 |
. 2
| |
| 5 | 3, 4 | breqtrri 4110 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: 1lt2nq 7593 0lt1sr 7952 ax0lt1 8063 declt 9605 decltc 9606 decle 9611 frecfzennn 10648 fsumabs 11976 basendxltplusgndx 13146 2strbasg 13153 2stropg 13154 basendxlttsetndx 13223 basendxltplendx 13237 basendxltdsndx 13252 basendxltunifndx 13262 basendxltedgfndx 15811 |
| Copyright terms: Public domain | W3C validator |