ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr4i Unicode version

Theorem 3brtr4i 4048
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
3brtr4.1  |-  A R B
3brtr4.2  |-  C  =  A
3brtr4.3  |-  D  =  B
Assertion
Ref Expression
3brtr4i  |-  C R D

Proof of Theorem 3brtr4i
StepHypRef Expression
1 3brtr4.2 . . 3  |-  C  =  A
2 3brtr4.1 . . 3  |-  A R B
31, 2eqbrtri 4039 . 2  |-  C R B
4 3brtr4.3 . 2  |-  D  =  B
53, 4breqtrri 4045 1  |-  C R D
Colors of variables: wff set class
Syntax hints:    = wceq 1364   class class class wbr 4018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019
This theorem is referenced by:  1lt2nq  7434  0lt1sr  7793  ax0lt1  7904  declt  9440  decltc  9441  decle  9446  frecfzennn  10456  fsumabs  11504  basendxltplusgndx  12622  2strbasg  12628  2stropg  12629  basendxlttsetndx  12698  basendxltplendx  12712  basendxltdsndx  12723  basendxltunifndx  12733
  Copyright terms: Public domain W3C validator