| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr4i | Unicode version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3brtr4.1 |
|
| 3brtr4.2 |
|
| 3brtr4.3 |
|
| Ref | Expression |
|---|---|
| 3brtr4i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr4.2 |
. . 3
| |
| 2 | 3brtr4.1 |
. . 3
| |
| 3 | 1, 2 | eqbrtri 4065 |
. 2
|
| 4 | 3brtr4.3 |
. 2
| |
| 5 | 3, 4 | breqtrri 4071 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: 1lt2nq 7519 0lt1sr 7878 ax0lt1 7989 declt 9531 decltc 9532 decle 9537 frecfzennn 10571 fsumabs 11776 basendxltplusgndx 12945 2strbasg 12952 2stropg 12953 basendxlttsetndx 13022 basendxltplendx 13036 basendxltdsndx 13051 basendxltunifndx 13061 basendxltedgfndx 15609 |
| Copyright terms: Public domain | W3C validator |