![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breqtri | Unicode version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
breqtr.1 |
![]() ![]() ![]() ![]() |
breqtr.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breqtri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtr.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | breqtr.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | breq2i 4038 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mpbi 145 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 |
This theorem is referenced by: breqtrri 4057 3brtr3i 4059 le9lt10 9477 9lt10 9581 sqrt2gt1lt2 11196 trireciplem 11646 cos1bnd 11905 cos2bnd 11906 cos01gt0 11909 sin4lt0 11913 z4even 12060 coseq00topi 15011 sincos4thpi 15016 lgsdir2lem2 15186 lgsdir2lem3 15187 ex-fl 15287 |
Copyright terms: Public domain | W3C validator |