ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtri Unicode version

Theorem breqtri 4014
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtr.1  |-  A R B
breqtr.2  |-  B  =  C
Assertion
Ref Expression
breqtri  |-  A R C

Proof of Theorem breqtri
StepHypRef Expression
1 breqtr.1 . 2  |-  A R B
2 breqtr.2 . . 3  |-  B  =  C
32breq2i 3997 . 2  |-  ( A R B  <->  A R C )
41, 3mpbi 144 1  |-  A R C
Colors of variables: wff set class
Syntax hints:    = wceq 1348   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990
This theorem is referenced by:  breqtrri  4016  3brtr3i  4018  le9lt10  9369  9lt10  9473  sqrt2gt1lt2  11013  trireciplem  11463  cos1bnd  11722  cos2bnd  11723  cos01gt0  11725  sin4lt0  11729  z4even  11875  coseq00topi  13550  sincos4thpi  13555  lgsdir2lem2  13724  lgsdir2lem3  13725  ex-fl  13760
  Copyright terms: Public domain W3C validator