ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breqtri Unicode version

Theorem breqtri 4058
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
breqtr.1  |-  A R B
breqtr.2  |-  B  =  C
Assertion
Ref Expression
breqtri  |-  A R C

Proof of Theorem breqtri
StepHypRef Expression
1 breqtr.1 . 2  |-  A R B
2 breqtr.2 . . 3  |-  B  =  C
32breq2i 4041 . 2  |-  ( A R B  <->  A R C )
41, 3mpbi 145 1  |-  A R C
Colors of variables: wff set class
Syntax hints:    = wceq 1364   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  breqtrri  4060  3brtr3i  4062  le9lt10  9483  9lt10  9587  sqrt2gt1lt2  11214  trireciplem  11665  cos1bnd  11924  cos2bnd  11925  cos01gt0  11928  sin4lt0  11932  z4even  12081  dec2dvds  12580  coseq00topi  15071  sincos4thpi  15076  lgsdir2lem2  15270  lgsdir2lem3  15271  ex-fl  15371
  Copyright terms: Public domain W3C validator