ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr3i GIF version

Theorem 3brtr3i 4058
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
3brtr3.1 𝐴𝑅𝐵
3brtr3.2 𝐴 = 𝐶
3brtr3.3 𝐵 = 𝐷
Assertion
Ref Expression
3brtr3i 𝐶𝑅𝐷

Proof of Theorem 3brtr3i
StepHypRef Expression
1 3brtr3.2 . . 3 𝐴 = 𝐶
2 3brtr3.1 . . 3 𝐴𝑅𝐵
31, 2eqbrtrri 4052 . 2 𝐶𝑅𝐵
4 3brtr3.3 . 2 𝐵 = 𝐷
53, 4breqtri 4054 1 𝐶𝑅𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1364   class class class wbr 4029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030
This theorem is referenced by:  suplocsrlempr  7867  iap0  9205  ef01bndlem  11899
  Copyright terms: Public domain W3C validator