| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr3i | GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3.1 | ⊢ 𝐴𝑅𝐵 |
| 3brtr3.2 | ⊢ 𝐴 = 𝐶 |
| 3brtr3.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3brtr3i | ⊢ 𝐶𝑅𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 3brtr3.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
| 3 | 1, 2 | eqbrtrri 4082 | . 2 ⊢ 𝐶𝑅𝐵 |
| 4 | 3brtr3.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | breqtri 4084 | 1 ⊢ 𝐶𝑅𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 class class class wbr 4059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: suplocsrlempr 7955 iap0 9295 ef01bndlem 12182 |
| Copyright terms: Public domain | W3C validator |