| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3brtr3i | GIF version | ||
| Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 11-Aug-1999.) |
| Ref | Expression |
|---|---|
| 3brtr3.1 | ⊢ 𝐴𝑅𝐵 |
| 3brtr3.2 | ⊢ 𝐴 = 𝐶 |
| 3brtr3.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3brtr3i | ⊢ 𝐶𝑅𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3brtr3.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 3brtr3.1 | . . 3 ⊢ 𝐴𝑅𝐵 | |
| 3 | 1, 2 | eqbrtrri 4105 | . 2 ⊢ 𝐶𝑅𝐵 |
| 4 | 3brtr3.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | breqtri 4107 | 1 ⊢ 𝐶𝑅𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 class class class wbr 4082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: suplocsrlempr 7990 iap0 9330 ef01bndlem 12262 |
| Copyright terms: Public domain | W3C validator |