ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrri Unicode version

Theorem eqbrtrri 4067
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtrr.1  |-  A  =  B
eqbrtrr.2  |-  A R C
Assertion
Ref Expression
eqbrtrri  |-  B R C

Proof of Theorem eqbrtrri
StepHypRef Expression
1 eqbrtrr.1 . . 3  |-  A  =  B
21eqcomi 2209 . 2  |-  B  =  A
3 eqbrtrr.2 . 2  |-  A R C
42, 3eqbrtri 4065 1  |-  B R C
Colors of variables: wff set class
Syntax hints:    = wceq 1373   class class class wbr 4044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045
This theorem is referenced by:  3brtr3i  4073  dju1p1e2  7305  expnass  10790  sqrt2gt1lt2  11360  cos1bnd  12070  cos2bnd  12071  infpn2  12827  2strstr1g  12954  coseq00topi  15307  pigt3  15316
  Copyright terms: Public domain W3C validator