ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrri Unicode version

Theorem eqbrtrri 4106
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtrr.1  |-  A  =  B
eqbrtrr.2  |-  A R C
Assertion
Ref Expression
eqbrtrri  |-  B R C

Proof of Theorem eqbrtrri
StepHypRef Expression
1 eqbrtrr.1 . . 3  |-  A  =  B
21eqcomi 2233 . 2  |-  B  =  A
3 eqbrtrr.2 . 2  |-  A R C
42, 3eqbrtri 4104 1  |-  B R C
Colors of variables: wff set class
Syntax hints:    = wceq 1395   class class class wbr 4083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084
This theorem is referenced by:  3brtr3i  4112  dju1p1e2  7375  expnass  10867  sqrt2gt1lt2  11560  cos1bnd  12270  cos2bnd  12271  infpn2  13027  2strstr1g  13155  coseq00topi  15509  pigt3  15518
  Copyright terms: Public domain W3C validator