| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrri | Unicode version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqbrtrr.1 |
|
| eqbrtrr.2 |
|
| Ref | Expression |
|---|---|
| eqbrtrri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrr.1 |
. . 3
| |
| 2 | 1 | eqcomi 2211 |
. 2
|
| 3 | eqbrtrr.2 |
. 2
| |
| 4 | 2, 3 | eqbrtri 4080 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: 3brtr3i 4088 dju1p1e2 7336 expnass 10827 sqrt2gt1lt2 11475 cos1bnd 12185 cos2bnd 12186 infpn2 12942 2strstr1g 13069 coseq00topi 15422 pigt3 15431 |
| Copyright terms: Public domain | W3C validator |