ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrri Unicode version

Theorem eqbrtrri 4005
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
eqbrtrr.1  |-  A  =  B
eqbrtrr.2  |-  A R C
Assertion
Ref Expression
eqbrtrri  |-  B R C

Proof of Theorem eqbrtrri
StepHypRef Expression
1 eqbrtrr.1 . . 3  |-  A  =  B
21eqcomi 2169 . 2  |-  B  =  A
3 eqbrtrr.2 . 2  |-  A R C
42, 3eqbrtri 4003 1  |-  B R C
Colors of variables: wff set class
Syntax hints:    = wceq 1343   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983
This theorem is referenced by:  3brtr3i  4011  dju1p1e2  7153  expnass  10560  sqrt2gt1lt2  10991  cos1bnd  11700  cos2bnd  11701  infpn2  12389  2strstr1g  12498  coseq00topi  13396  pigt3  13405
  Copyright terms: Public domain W3C validator