Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr4g Unicode version

Theorem 3brtr4g 3843
 Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr4g.1
3brtr4g.2
3brtr4g.3
Assertion
Ref Expression
3brtr4g

Proof of Theorem 3brtr4g
StepHypRef Expression
1 3brtr4g.1 . 2
2 3brtr4g.2 . . 3
3 3brtr4g.3 . . 3
42, 3breq12i 3820 . 2
51, 4sylibr 132 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1285   class class class wbr 3811 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2614  df-un 2988  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812 This theorem is referenced by:  syl5eqbr  3844  crth  10980
 Copyright terms: Public domain W3C validator