ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crth Unicode version

Theorem crth 12392
Description: The Chinese Remainder Theorem: the function that maps  x to its remainder classes  mod  M and  mod  N is 1-1 and onto when  M and  N are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
crth.1  |-  S  =  ( 0..^ ( M  x.  N ) )
crth.2  |-  T  =  ( ( 0..^ M )  X.  ( 0..^ N ) )
crth.3  |-  F  =  ( x  e.  S  |-> 
<. ( x  mod  M
) ,  ( x  mod  N ) >.
)
crth.4  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )
Assertion
Ref Expression
crth  |-  ( ph  ->  F : S -1-1-onto-> T )
Distinct variable groups:    x, M    x, N    x, S    x, T    ph, x
Allowed substitution hint:    F( x)

Proof of Theorem crth
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 10222 . . . . . 6  |-  ( x  e.  ( 0..^ ( M  x.  N ) )  ->  x  e.  ZZ )
2 crth.1 . . . . . 6  |-  S  =  ( 0..^ ( M  x.  N ) )
31, 2eleq2s 2291 . . . . 5  |-  ( x  e.  S  ->  x  e.  ZZ )
4 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  x  e.  ZZ )
5 crth.4 . . . . . . . . . 10  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )
65simp1d 1011 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
76adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  M  e.  NN )
8 zmodfzo 10439 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  NN )  ->  ( x  mod  M
)  e.  ( 0..^ M ) )
94, 7, 8syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( x  mod  M )  e.  ( 0..^ M ) )
105simp2d 1012 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
1110adantr 276 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  N  e.  NN )
12 zmodfzo 10439 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  NN )  ->  ( x  mod  N
)  e.  ( 0..^ N ) )
134, 11, 12syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( x  mod  N )  e.  ( 0..^ N ) )
14 opelxpi 4695 . . . . . . 7  |-  ( ( ( x  mod  M
)  e.  ( 0..^ M )  /\  (
x  mod  N )  e.  ( 0..^ N ) )  ->  <. ( x  mod  M ) ,  ( x  mod  N
) >.  e.  ( ( 0..^ M )  X.  ( 0..^ N ) ) )
159, 13, 14syl2anc 411 . . . . . 6  |-  ( (
ph  /\  x  e.  ZZ )  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  e.  (
( 0..^ M )  X.  ( 0..^ N ) ) )
16 crth.2 . . . . . 6  |-  T  =  ( ( 0..^ M )  X.  ( 0..^ N ) )
1715, 16eleqtrrdi 2290 . . . . 5  |-  ( (
ph  /\  x  e.  ZZ )  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  e.  T
)
183, 17sylan2 286 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  e.  T
)
19 crth.3 . . . 4  |-  F  =  ( x  e.  S  |-> 
<. ( x  mod  M
) ,  ( x  mod  N ) >.
)
2018, 19fmptd 5716 . . 3  |-  ( ph  ->  F : S --> T )
21 simprl 529 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  S )
22 elfzoelz 10222 . . . . . . . . . . . . 13  |-  ( y  e.  ( 0..^ ( M  x.  N ) )  ->  y  e.  ZZ )
2322, 2eleq2s 2291 . . . . . . . . . . . 12  |-  ( y  e.  S  ->  y  e.  ZZ )
2423ad2antrl 490 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  ZZ )
25 zq 9700 . . . . . . . . . . 11  |-  ( y  e.  ZZ  ->  y  e.  QQ )
2624, 25syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  QQ )
276adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  M  e.  NN )
28 nnq 9707 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  M  e.  QQ )
2927, 28syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  M  e.  QQ )
3027nngt0d 9034 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
0  <  M )
3126, 29, 30modqcld 10420 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  mod  M
)  e.  QQ )
3210adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  N  e.  NN )
33 nnq 9707 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  QQ )
3432, 33syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  N  e.  QQ )
3532nngt0d 9034 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
0  <  N )
3626, 34, 35modqcld 10420 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  mod  N
)  e.  QQ )
37 opexg 4261 . . . . . . . . 9  |-  ( ( ( y  mod  M
)  e.  QQ  /\  ( y  mod  N
)  e.  QQ )  ->  <. ( y  mod 
M ) ,  ( y  mod  N )
>.  e.  _V )
3831, 36, 37syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  <. ( y  mod  M
) ,  ( y  mod  N ) >.  e.  _V )
39 oveq1 5929 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  mod  M )  =  ( y  mod 
M ) )
40 oveq1 5929 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  mod  N )  =  ( y  mod 
N ) )
4139, 40opeq12d 3816 . . . . . . . . 9  |-  ( x  =  y  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  =  <. ( y  mod  M ) ,  ( y  mod 
N ) >. )
4241, 19fvmptg 5637 . . . . . . . 8  |-  ( ( y  e.  S  /\  <.
( y  mod  M
) ,  ( y  mod  N ) >.  e.  _V )  ->  ( F `  y )  =  <. ( y  mod 
M ) ,  ( y  mod  N )
>. )
4321, 38, 42syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( F `  y
)  =  <. (
y  mod  M ) ,  ( y  mod 
N ) >. )
44 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  S )
45 elfzoelz 10222 . . . . . . . . . . . . 13  |-  ( z  e.  ( 0..^ ( M  x.  N ) )  ->  z  e.  ZZ )
4645, 2eleq2s 2291 . . . . . . . . . . . 12  |-  ( z  e.  S  ->  z  e.  ZZ )
4744, 46syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  ZZ )
48 zq 9700 . . . . . . . . . . 11  |-  ( z  e.  ZZ  ->  z  e.  QQ )
4947, 48syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  QQ )
5049, 29, 30modqcld 10420 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( z  mod  M
)  e.  QQ )
5149, 34, 35modqcld 10420 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( z  mod  N
)  e.  QQ )
52 opexg 4261 . . . . . . . . 9  |-  ( ( ( z  mod  M
)  e.  QQ  /\  ( z  mod  N
)  e.  QQ )  ->  <. ( z  mod 
M ) ,  ( z  mod  N )
>.  e.  _V )
5350, 51, 52syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  <. ( z  mod  M
) ,  ( z  mod  N ) >.  e.  _V )
54 oveq1 5929 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  mod  M )  =  ( z  mod 
M ) )
55 oveq1 5929 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  mod  N )  =  ( z  mod 
N ) )
5654, 55opeq12d 3816 . . . . . . . . 9  |-  ( x  =  z  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  =  <. ( z  mod  M ) ,  ( z  mod 
N ) >. )
5756, 19fvmptg 5637 . . . . . . . 8  |-  ( ( z  e.  S  /\  <.
( z  mod  M
) ,  ( z  mod  N ) >.  e.  _V )  ->  ( F `  z )  =  <. ( z  mod 
M ) ,  ( z  mod  N )
>. )
5844, 53, 57syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( F `  z
)  =  <. (
z  mod  M ) ,  ( z  mod 
N ) >. )
5943, 58eqeq12d 2211 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( F `  y )  =  ( F `  z )  <->  <. ( y  mod  M
) ,  ( y  mod  N ) >.  =  <. ( z  mod 
M ) ,  ( z  mod  N )
>. ) )
60 opthg 4271 . . . . . . 7  |-  ( ( ( y  mod  M
)  e.  QQ  /\  ( y  mod  N
)  e.  QQ )  ->  ( <. (
y  mod  M ) ,  ( y  mod 
N ) >.  =  <. ( z  mod  M ) ,  ( z  mod 
N ) >.  <->  ( (
y  mod  M )  =  ( z  mod 
M )  /\  (
y  mod  N )  =  ( z  mod 
N ) ) ) )
6131, 36, 60syl2anc 411 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( <. ( y  mod 
M ) ,  ( y  mod  N )
>.  =  <. ( z  mod  M ) ,  ( z  mod  N
) >. 
<->  ( ( y  mod 
M )  =  ( z  mod  M )  /\  ( y  mod 
N )  =  ( z  mod  N ) ) ) )
6259, 61bitrd 188 . . . . 5  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( F `  y )  =  ( F `  z )  <-> 
( ( y  mod 
M )  =  ( z  mod  M )  /\  ( y  mod 
N )  =  ( z  mod  N ) ) ) )
6327nnzd 9447 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  M  e.  ZZ )
6432nnzd 9447 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  N  e.  ZZ )
6521, 2eleqtrdi 2289 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  ( 0..^ ( M  x.  N
) ) )
6665, 22syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  ZZ )
6744, 2eleqtrdi 2289 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  ( 0..^ ( M  x.  N
) ) )
6867, 45syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  ZZ )
6966, 68zsubcld 9453 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  -  z
)  e.  ZZ )
705simp3d 1013 . . . . . . . 8  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
7170adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( M  gcd  N
)  =  1 )
72 coprmdvds2 12261 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( y  -  z
)  e.  ZZ )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M 
||  ( y  -  z )  /\  N  ||  ( y  -  z
) )  ->  ( M  x.  N )  ||  ( y  -  z
) ) )
7363, 64, 69, 71, 72syl31anc 1252 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( M  ||  ( y  -  z
)  /\  N  ||  (
y  -  z ) )  ->  ( M  x.  N )  ||  (
y  -  z ) ) )
74 moddvds 11964 . . . . . . . 8  |-  ( ( M  e.  NN  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
( y  mod  M
)  =  ( z  mod  M )  <->  M  ||  (
y  -  z ) ) )
7527, 66, 68, 74syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod 
M )  =  ( z  mod  M )  <-> 
M  ||  ( y  -  z ) ) )
76 moddvds 11964 . . . . . . . 8  |-  ( ( N  e.  NN  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
( y  mod  N
)  =  ( z  mod  N )  <->  N  ||  (
y  -  z ) ) )
7732, 66, 68, 76syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod 
N )  =  ( z  mod  N )  <-> 
N  ||  ( y  -  z ) ) )
7875, 77anbi12d 473 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( ( y  mod  M )  =  ( z  mod  M
)  /\  ( y  mod  N )  =  ( z  mod  N ) )  <->  ( M  ||  ( y  -  z
)  /\  N  ||  (
y  -  z ) ) ) )
79 qmulcl 9711 . . . . . . . . . 10  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  ( M  x.  N
)  e.  QQ )
8029, 34, 79syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( M  x.  N
)  e.  QQ )
81 elfzole1 10231 . . . . . . . . . 10  |-  ( y  e.  ( 0..^ ( M  x.  N ) )  ->  0  <_  y )
8265, 81syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
0  <_  y )
83 elfzolt2 10232 . . . . . . . . . 10  |-  ( y  e.  ( 0..^ ( M  x.  N ) )  ->  y  <  ( M  x.  N ) )
8465, 83syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  <  ( M  x.  N ) )
85 modqid 10441 . . . . . . . . 9  |-  ( ( ( y  e.  QQ  /\  ( M  x.  N
)  e.  QQ )  /\  ( 0  <_ 
y  /\  y  <  ( M  x.  N ) ) )  ->  (
y  mod  ( M  x.  N ) )  =  y )
8626, 80, 82, 84, 85syl22anc 1250 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  mod  ( M  x.  N )
)  =  y )
87 elfzole1 10231 . . . . . . . . . 10  |-  ( z  e.  ( 0..^ ( M  x.  N ) )  ->  0  <_  z )
8867, 87syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
0  <_  z )
89 elfzolt2 10232 . . . . . . . . . 10  |-  ( z  e.  ( 0..^ ( M  x.  N ) )  ->  z  <  ( M  x.  N ) )
9067, 89syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  <  ( M  x.  N ) )
91 modqid 10441 . . . . . . . . 9  |-  ( ( ( z  e.  QQ  /\  ( M  x.  N
)  e.  QQ )  /\  ( 0  <_ 
z  /\  z  <  ( M  x.  N ) ) )  ->  (
z  mod  ( M  x.  N ) )  =  z )
9249, 80, 88, 90, 91syl22anc 1250 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( z  mod  ( M  x.  N )
)  =  z )
9386, 92eqeq12d 2211 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod  ( M  x.  N
) )  =  ( z  mod  ( M  x.  N ) )  <-> 
y  =  z ) )
9427, 32nnmulcld 9039 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( M  x.  N
)  e.  NN )
95 moddvds 11964 . . . . . . . 8  |-  ( ( ( M  x.  N
)  e.  NN  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
( y  mod  ( M  x.  N )
)  =  ( z  mod  ( M  x.  N ) )  <->  ( M  x.  N )  ||  (
y  -  z ) ) )
9694, 66, 68, 95syl3anc 1249 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod  ( M  x.  N
) )  =  ( z  mod  ( M  x.  N ) )  <-> 
( M  x.  N
)  ||  ( y  -  z ) ) )
9793, 96bitr3d 190 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  =  z  <-> 
( M  x.  N
)  ||  ( y  -  z ) ) )
9873, 78, 973imtr4d 203 . . . . 5  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( ( y  mod  M )  =  ( z  mod  M
)  /\  ( y  mod  N )  =  ( z  mod  N ) )  ->  y  =  z ) )
9962, 98sylbid 150 . . . 4  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
10099ralrimivva 2579 . . 3  |-  ( ph  ->  A. y  e.  S  A. z  e.  S  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
101 dff13 5815 . . 3  |-  ( F : S -1-1-> T  <->  ( F : S --> T  /\  A. y  e.  S  A. z  e.  S  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
10220, 100, 101sylanbrc 417 . 2  |-  ( ph  ->  F : S -1-1-> T
)
103 nnnn0 9256 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  NN0 )
104 nnnn0 9256 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
105 hashfzo0 10915 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( `  (
0..^ M ) )  =  M )
106 hashfzo0 10915 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( `  (
0..^ N ) )  =  N )
107105, 106oveqan12d 5941 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( `  (
0..^ M ) )  x.  ( `  (
0..^ N ) ) )  =  ( M  x.  N ) )
108 0z 9337 . . . . . . . . . 10  |-  0  e.  ZZ
109 simpl 109 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  NN0 )
110109nn0zd 9446 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
111 fzofig 10524 . . . . . . . . . 10  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0..^ M )  e.  Fin )
112108, 110, 111sylancr 414 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0..^ M )  e.  Fin )
113 nn0z 9346 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  ZZ )
114113adantl 277 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
115 fzofig 10524 . . . . . . . . . 10  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0..^ N )  e.  Fin )
116108, 114, 115sylancr 414 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0..^ N )  e.  Fin )
117 hashxp 10918 . . . . . . . . 9  |-  ( ( ( 0..^ M )  e.  Fin  /\  (
0..^ N )  e. 
Fin )  ->  ( `  ( ( 0..^ M )  X.  ( 0..^ N ) ) )  =  ( ( `  (
0..^ M ) )  x.  ( `  (
0..^ N ) ) ) )
118112, 116, 117syl2anc 411 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( `  ( ( 0..^ M )  X.  (
0..^ N ) ) )  =  ( ( `  ( 0..^ M ) )  x.  ( `  (
0..^ N ) ) ) )
119 nn0mulcl 9285 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  x.  N
)  e.  NN0 )
120 hashfzo0 10915 . . . . . . . . 9  |-  ( ( M  x.  N )  e.  NN0  ->  ( `  (
0..^ ( M  x.  N ) ) )  =  ( M  x.  N ) )
121119, 120syl 14 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( `  ( 0..^ ( M  x.  N ) ) )  =  ( M  x.  N ) )
122107, 118, 1213eqtr4rd 2240 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( `  ( 0..^ ( M  x.  N ) ) )  =  ( `  ( ( 0..^ M )  X.  ( 0..^ N ) ) ) )
123119nn0zd 9446 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  x.  N
)  e.  ZZ )
124 fzofig 10524 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( 0..^ ( M  x.  N ) )  e.  Fin )
125108, 123, 124sylancr 414 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0..^ ( M  x.  N ) )  e.  Fin )
126 xpfi 6993 . . . . . . . . 9  |-  ( ( ( 0..^ M )  e.  Fin  /\  (
0..^ N )  e. 
Fin )  ->  (
( 0..^ M )  X.  ( 0..^ N ) )  e.  Fin )
127112, 116, 126syl2anc 411 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 0..^ M )  X.  ( 0..^ N ) )  e. 
Fin )
128 hashen 10876 . . . . . . . 8  |-  ( ( ( 0..^ ( M  x.  N ) )  e.  Fin  /\  (
( 0..^ M )  X.  ( 0..^ N ) )  e.  Fin )  ->  ( ( `  (
0..^ ( M  x.  N ) ) )  =  ( `  (
( 0..^ M )  X.  ( 0..^ N ) ) )  <->  ( 0..^ ( M  x.  N
) )  ~~  (
( 0..^ M )  X.  ( 0..^ N ) ) ) )
129125, 127, 128syl2anc 411 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( `  (
0..^ ( M  x.  N ) ) )  =  ( `  (
( 0..^ M )  X.  ( 0..^ N ) ) )  <->  ( 0..^ ( M  x.  N
) )  ~~  (
( 0..^ M )  X.  ( 0..^ N ) ) ) )
130122, 129mpbid 147 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) )
131103, 104, 130syl2an 289 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) )
1326, 10, 131syl2anc 411 . . . 4  |-  ( ph  ->  ( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) )
133132, 2, 163brtr4g 4067 . . 3  |-  ( ph  ->  S  ~~  T )
1346nnnn0d 9302 . . . . 5  |-  ( ph  ->  M  e.  NN0 )
13510nnnn0d 9302 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
136134, 135, 127syl2anc 411 . . . 4  |-  ( ph  ->  ( ( 0..^ M )  X.  ( 0..^ N ) )  e. 
Fin )
13716, 136eqeltrid 2283 . . 3  |-  ( ph  ->  T  e.  Fin )
138 f1finf1o 7013 . . 3  |-  ( ( S  ~~  T  /\  T  e.  Fin )  ->  ( F : S -1-1-> T  <-> 
F : S -1-1-onto-> T ) )
139133, 137, 138syl2anc 411 . 2  |-  ( ph  ->  ( F : S -1-1-> T  <-> 
F : S -1-1-onto-> T ) )
140102, 139mpbid 147 1  |-  ( ph  ->  F : S -1-1-onto-> T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   <.cop 3625   class class class wbr 4033    |-> cmpt 4094    X. cxp 4661   -->wf 5254   -1-1->wf1 5255   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922    ~~ cen 6797   Fincfn 6799   0cc0 7879   1c1 7880    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197   NNcn 8990   NN0cn0 9249   ZZcz 9326   QQcq 9693  ..^cfzo 10217    mod cmo 10414  ♯chash 10867    || cdvds 11952    gcd cgcd 12120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121
This theorem is referenced by:  phimullem  12393
  Copyright terms: Public domain W3C validator