ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  crth Unicode version

Theorem crth 10980
Description: The Chinese Remainder Theorem: the function that maps  x to its remainder classes  mod  M and  mod  N is 1-1 and onto when  M and  N are coprime. (Contributed by Mario Carneiro, 24-Feb-2014.) (Proof shortened by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
crth.1  |-  S  =  ( 0..^ ( M  x.  N ) )
crth.2  |-  T  =  ( ( 0..^ M )  X.  ( 0..^ N ) )
crth.3  |-  F  =  ( x  e.  S  |-> 
<. ( x  mod  M
) ,  ( x  mod  N ) >.
)
crth.4  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )
Assertion
Ref Expression
crth  |-  ( ph  ->  F : S -1-1-onto-> T )
Distinct variable groups:    x, M    x, N    x, S    x, T    ph, x
Allowed substitution hint:    F( x)

Proof of Theorem crth
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzoelz 9448 . . . . . 6  |-  ( x  e.  ( 0..^ ( M  x.  N ) )  ->  x  e.  ZZ )
2 crth.1 . . . . . 6  |-  S  =  ( 0..^ ( M  x.  N ) )
31, 2eleq2s 2177 . . . . 5  |-  ( x  e.  S  ->  x  e.  ZZ )
4 simpr 108 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  x  e.  ZZ )
5 crth.4 . . . . . . . . . 10  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN  /\  ( M  gcd  N )  =  1 ) )
65simp1d 951 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
76adantr 270 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  M  e.  NN )
8 zmodfzo 9643 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  NN )  ->  ( x  mod  M
)  e.  ( 0..^ M ) )
94, 7, 8syl2anc 403 . . . . . . 7  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( x  mod  M )  e.  ( 0..^ M ) )
105simp2d 952 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
1110adantr 270 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ZZ )  ->  N  e.  NN )
12 zmodfzo 9643 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  NN )  ->  ( x  mod  N
)  e.  ( 0..^ N ) )
134, 11, 12syl2anc 403 . . . . . . 7  |-  ( (
ph  /\  x  e.  ZZ )  ->  ( x  mod  N )  e.  ( 0..^ N ) )
14 opelxpi 4432 . . . . . . 7  |-  ( ( ( x  mod  M
)  e.  ( 0..^ M )  /\  (
x  mod  N )  e.  ( 0..^ N ) )  ->  <. ( x  mod  M ) ,  ( x  mod  N
) >.  e.  ( ( 0..^ M )  X.  ( 0..^ N ) ) )
159, 13, 14syl2anc 403 . . . . . 6  |-  ( (
ph  /\  x  e.  ZZ )  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  e.  (
( 0..^ M )  X.  ( 0..^ N ) ) )
16 crth.2 . . . . . 6  |-  T  =  ( ( 0..^ M )  X.  ( 0..^ N ) )
1715, 16syl6eleqr 2176 . . . . 5  |-  ( (
ph  /\  x  e.  ZZ )  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  e.  T
)
183, 17sylan2 280 . . . 4  |-  ( (
ph  /\  x  e.  S )  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  e.  T
)
19 crth.3 . . . 4  |-  F  =  ( x  e.  S  |-> 
<. ( x  mod  M
) ,  ( x  mod  N ) >.
)
2018, 19fmptd 5397 . . 3  |-  ( ph  ->  F : S --> T )
21 simprl 498 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  S )
22 elfzoelz 9448 . . . . . . . . . . . . 13  |-  ( y  e.  ( 0..^ ( M  x.  N ) )  ->  y  e.  ZZ )
2322, 2eleq2s 2177 . . . . . . . . . . . 12  |-  ( y  e.  S  ->  y  e.  ZZ )
2423ad2antrl 474 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  ZZ )
25 zq 9006 . . . . . . . . . . 11  |-  ( y  e.  ZZ  ->  y  e.  QQ )
2624, 25syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  QQ )
276adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  M  e.  NN )
28 nnq 9013 . . . . . . . . . . 11  |-  ( M  e.  NN  ->  M  e.  QQ )
2927, 28syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  M  e.  QQ )
3027nngt0d 8359 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
0  <  M )
3126, 29, 30modqcld 9624 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  mod  M
)  e.  QQ )
3210adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  N  e.  NN )
33 nnq 9013 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  QQ )
3432, 33syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  N  e.  QQ )
3532nngt0d 8359 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
0  <  N )
3626, 34, 35modqcld 9624 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  mod  N
)  e.  QQ )
37 opexg 4019 . . . . . . . . 9  |-  ( ( ( y  mod  M
)  e.  QQ  /\  ( y  mod  N
)  e.  QQ )  ->  <. ( y  mod 
M ) ,  ( y  mod  N )
>.  e.  _V )
3831, 36, 37syl2anc 403 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  <. ( y  mod  M
) ,  ( y  mod  N ) >.  e.  _V )
39 oveq1 5598 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  mod  M )  =  ( y  mod 
M ) )
40 oveq1 5598 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  mod  N )  =  ( y  mod 
N ) )
4139, 40opeq12d 3604 . . . . . . . . 9  |-  ( x  =  y  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  =  <. ( y  mod  M ) ,  ( y  mod 
N ) >. )
4241, 19fvmptg 5325 . . . . . . . 8  |-  ( ( y  e.  S  /\  <.
( y  mod  M
) ,  ( y  mod  N ) >.  e.  _V )  ->  ( F `  y )  =  <. ( y  mod 
M ) ,  ( y  mod  N )
>. )
4321, 38, 42syl2anc 403 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( F `  y
)  =  <. (
y  mod  M ) ,  ( y  mod 
N ) >. )
44 simprr 499 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  S )
45 elfzoelz 9448 . . . . . . . . . . . . 13  |-  ( z  e.  ( 0..^ ( M  x.  N ) )  ->  z  e.  ZZ )
4645, 2eleq2s 2177 . . . . . . . . . . . 12  |-  ( z  e.  S  ->  z  e.  ZZ )
4744, 46syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  ZZ )
48 zq 9006 . . . . . . . . . . 11  |-  ( z  e.  ZZ  ->  z  e.  QQ )
4947, 48syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  QQ )
5049, 29, 30modqcld 9624 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( z  mod  M
)  e.  QQ )
5149, 34, 35modqcld 9624 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( z  mod  N
)  e.  QQ )
52 opexg 4019 . . . . . . . . 9  |-  ( ( ( z  mod  M
)  e.  QQ  /\  ( z  mod  N
)  e.  QQ )  ->  <. ( z  mod 
M ) ,  ( z  mod  N )
>.  e.  _V )
5350, 51, 52syl2anc 403 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  <. ( z  mod  M
) ,  ( z  mod  N ) >.  e.  _V )
54 oveq1 5598 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  mod  M )  =  ( z  mod 
M ) )
55 oveq1 5598 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  mod  N )  =  ( z  mod 
N ) )
5654, 55opeq12d 3604 . . . . . . . . 9  |-  ( x  =  z  ->  <. (
x  mod  M ) ,  ( x  mod  N ) >.  =  <. ( z  mod  M ) ,  ( z  mod 
N ) >. )
5756, 19fvmptg 5325 . . . . . . . 8  |-  ( ( z  e.  S  /\  <.
( z  mod  M
) ,  ( z  mod  N ) >.  e.  _V )  ->  ( F `  z )  =  <. ( z  mod 
M ) ,  ( z  mod  N )
>. )
5844, 53, 57syl2anc 403 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( F `  z
)  =  <. (
z  mod  M ) ,  ( z  mod 
N ) >. )
5943, 58eqeq12d 2097 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( F `  y )  =  ( F `  z )  <->  <. ( y  mod  M
) ,  ( y  mod  N ) >.  =  <. ( z  mod 
M ) ,  ( z  mod  N )
>. ) )
60 opthg 4029 . . . . . . 7  |-  ( ( ( y  mod  M
)  e.  QQ  /\  ( y  mod  N
)  e.  QQ )  ->  ( <. (
y  mod  M ) ,  ( y  mod 
N ) >.  =  <. ( z  mod  M ) ,  ( z  mod 
N ) >.  <->  ( (
y  mod  M )  =  ( z  mod 
M )  /\  (
y  mod  N )  =  ( z  mod 
N ) ) ) )
6131, 36, 60syl2anc 403 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( <. ( y  mod 
M ) ,  ( y  mod  N )
>.  =  <. ( z  mod  M ) ,  ( z  mod  N
) >. 
<->  ( ( y  mod 
M )  =  ( z  mod  M )  /\  ( y  mod 
N )  =  ( z  mod  N ) ) ) )
6259, 61bitrd 186 . . . . 5  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( F `  y )  =  ( F `  z )  <-> 
( ( y  mod 
M )  =  ( z  mod  M )  /\  ( y  mod 
N )  =  ( z  mod  N ) ) ) )
6327nnzd 8763 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  M  e.  ZZ )
6432nnzd 8763 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  ->  N  e.  ZZ )
6521, 2syl6eleq 2175 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  ( 0..^ ( M  x.  N
) ) )
6665, 22syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  e.  ZZ )
6744, 2syl6eleq 2175 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  ( 0..^ ( M  x.  N
) ) )
6867, 45syl 14 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  e.  ZZ )
6966, 68zsubcld 8769 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  -  z
)  e.  ZZ )
705simp3d 953 . . . . . . . 8  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
7170adantr 270 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( M  gcd  N
)  =  1 )
72 coprmdvds2 10855 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( y  -  z
)  e.  ZZ )  /\  ( M  gcd  N )  =  1 )  ->  ( ( M 
||  ( y  -  z )  /\  N  ||  ( y  -  z
) )  ->  ( M  x.  N )  ||  ( y  -  z
) ) )
7363, 64, 69, 71, 72syl31anc 1173 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( M  ||  ( y  -  z
)  /\  N  ||  (
y  -  z ) )  ->  ( M  x.  N )  ||  (
y  -  z ) ) )
74 moddvds 10585 . . . . . . . 8  |-  ( ( M  e.  NN  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
( y  mod  M
)  =  ( z  mod  M )  <->  M  ||  (
y  -  z ) ) )
7527, 66, 68, 74syl3anc 1170 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod 
M )  =  ( z  mod  M )  <-> 
M  ||  ( y  -  z ) ) )
76 moddvds 10585 . . . . . . . 8  |-  ( ( N  e.  NN  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
( y  mod  N
)  =  ( z  mod  N )  <->  N  ||  (
y  -  z ) ) )
7732, 66, 68, 76syl3anc 1170 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod 
N )  =  ( z  mod  N )  <-> 
N  ||  ( y  -  z ) ) )
7875, 77anbi12d 457 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( ( y  mod  M )  =  ( z  mod  M
)  /\  ( y  mod  N )  =  ( z  mod  N ) )  <->  ( M  ||  ( y  -  z
)  /\  N  ||  (
y  -  z ) ) ) )
79 qmulcl 9017 . . . . . . . . . 10  |-  ( ( M  e.  QQ  /\  N  e.  QQ )  ->  ( M  x.  N
)  e.  QQ )
8029, 34, 79syl2anc 403 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( M  x.  N
)  e.  QQ )
81 elfzole1 9455 . . . . . . . . . 10  |-  ( y  e.  ( 0..^ ( M  x.  N ) )  ->  0  <_  y )
8265, 81syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
0  <_  y )
83 elfzolt2 9456 . . . . . . . . . 10  |-  ( y  e.  ( 0..^ ( M  x.  N ) )  ->  y  <  ( M  x.  N ) )
8465, 83syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
y  <  ( M  x.  N ) )
85 modqid 9645 . . . . . . . . 9  |-  ( ( ( y  e.  QQ  /\  ( M  x.  N
)  e.  QQ )  /\  ( 0  <_ 
y  /\  y  <  ( M  x.  N ) ) )  ->  (
y  mod  ( M  x.  N ) )  =  y )
8626, 80, 82, 84, 85syl22anc 1171 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  mod  ( M  x.  N )
)  =  y )
87 elfzole1 9455 . . . . . . . . . 10  |-  ( z  e.  ( 0..^ ( M  x.  N ) )  ->  0  <_  z )
8867, 87syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
0  <_  z )
89 elfzolt2 9456 . . . . . . . . . 10  |-  ( z  e.  ( 0..^ ( M  x.  N ) )  ->  z  <  ( M  x.  N ) )
9067, 89syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
z  <  ( M  x.  N ) )
91 modqid 9645 . . . . . . . . 9  |-  ( ( ( z  e.  QQ  /\  ( M  x.  N
)  e.  QQ )  /\  ( 0  <_ 
z  /\  z  <  ( M  x.  N ) ) )  ->  (
z  mod  ( M  x.  N ) )  =  z )
9249, 80, 88, 90, 91syl22anc 1171 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( z  mod  ( M  x.  N )
)  =  z )
9386, 92eqeq12d 2097 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod  ( M  x.  N
) )  =  ( z  mod  ( M  x.  N ) )  <-> 
y  =  z ) )
9427, 32nnmulcld 8364 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( M  x.  N
)  e.  NN )
95 moddvds 10585 . . . . . . . 8  |-  ( ( ( M  x.  N
)  e.  NN  /\  y  e.  ZZ  /\  z  e.  ZZ )  ->  (
( y  mod  ( M  x.  N )
)  =  ( z  mod  ( M  x.  N ) )  <->  ( M  x.  N )  ||  (
y  -  z ) ) )
9694, 66, 68, 95syl3anc 1170 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( y  mod  ( M  x.  N
) )  =  ( z  mod  ( M  x.  N ) )  <-> 
( M  x.  N
)  ||  ( y  -  z ) ) )
9793, 96bitr3d 188 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( y  =  z  <-> 
( M  x.  N
)  ||  ( y  -  z ) ) )
9873, 78, 973imtr4d 201 . . . . 5  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( ( y  mod  M )  =  ( z  mod  M
)  /\  ( y  mod  N )  =  ( z  mod  N ) )  ->  y  =  z ) )
9962, 98sylbid 148 . . . 4  |-  ( (
ph  /\  ( y  e.  S  /\  z  e.  S ) )  -> 
( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
10099ralrimivva 2449 . . 3  |-  ( ph  ->  A. y  e.  S  A. z  e.  S  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
101 dff13 5487 . . 3  |-  ( F : S -1-1-> T  <->  ( F : S --> T  /\  A. y  e.  S  A. z  e.  S  (
( F `  y
)  =  ( F `
 z )  -> 
y  =  z ) ) )
10220, 100, 101sylanbrc 408 . 2  |-  ( ph  ->  F : S -1-1-> T
)
103 nnnn0 8572 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  NN0 )
104 nnnn0 8572 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
105 hashfzo0 10066 . . . . . . . . 9  |-  ( M  e.  NN0  ->  ( `  (
0..^ M ) )  =  M )
106 hashfzo0 10066 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( `  (
0..^ N ) )  =  N )
107105, 106oveqan12d 5610 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( `  (
0..^ M ) )  x.  ( `  (
0..^ N ) ) )  =  ( M  x.  N ) )
108 0z 8657 . . . . . . . . . 10  |-  0  e.  ZZ
109 simpl 107 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  NN0 )
110109nn0zd 8762 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  M  e.  ZZ )
111 fzofig 9728 . . . . . . . . . 10  |-  ( ( 0  e.  ZZ  /\  M  e.  ZZ )  ->  ( 0..^ M )  e.  Fin )
112108, 110, 111sylancr 405 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0..^ M )  e.  Fin )
113 nn0z 8666 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  ZZ )
114113adantl 271 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  ZZ )
115 fzofig 9728 . . . . . . . . . 10  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0..^ N )  e.  Fin )
116108, 114, 115sylancr 405 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0..^ N )  e.  Fin )
117 hashxp 10069 . . . . . . . . 9  |-  ( ( ( 0..^ M )  e.  Fin  /\  (
0..^ N )  e. 
Fin )  ->  ( `  ( ( 0..^ M )  X.  ( 0..^ N ) ) )  =  ( ( `  (
0..^ M ) )  x.  ( `  (
0..^ N ) ) ) )
118112, 116, 117syl2anc 403 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( `  ( ( 0..^ M )  X.  (
0..^ N ) ) )  =  ( ( `  ( 0..^ M ) )  x.  ( `  (
0..^ N ) ) ) )
119 nn0mulcl 8601 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  x.  N
)  e.  NN0 )
120 hashfzo0 10066 . . . . . . . . 9  |-  ( ( M  x.  N )  e.  NN0  ->  ( `  (
0..^ ( M  x.  N ) ) )  =  ( M  x.  N ) )
121119, 120syl 14 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( `  ( 0..^ ( M  x.  N ) ) )  =  ( M  x.  N ) )
122107, 118, 1213eqtr4rd 2126 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( `  ( 0..^ ( M  x.  N ) ) )  =  ( `  ( ( 0..^ M )  X.  ( 0..^ N ) ) ) )
123119nn0zd 8762 . . . . . . . . 9  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  x.  N
)  e.  ZZ )
124 fzofig 9728 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( M  x.  N
)  e.  ZZ )  ->  ( 0..^ ( M  x.  N ) )  e.  Fin )
125108, 123, 124sylancr 405 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0..^ ( M  x.  N ) )  e.  Fin )
126 xpfi 6565 . . . . . . . . 9  |-  ( ( ( 0..^ M )  e.  Fin  /\  (
0..^ N )  e. 
Fin )  ->  (
( 0..^ M )  X.  ( 0..^ N ) )  e.  Fin )
127112, 116, 126syl2anc 403 . . . . . . . 8  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( 0..^ M )  X.  ( 0..^ N ) )  e. 
Fin )
128 hashen 10027 . . . . . . . 8  |-  ( ( ( 0..^ ( M  x.  N ) )  e.  Fin  /\  (
( 0..^ M )  X.  ( 0..^ N ) )  e.  Fin )  ->  ( ( `  (
0..^ ( M  x.  N ) ) )  =  ( `  (
( 0..^ M )  X.  ( 0..^ N ) ) )  <->  ( 0..^ ( M  x.  N
) )  ~~  (
( 0..^ M )  X.  ( 0..^ N ) ) ) )
129125, 127, 128syl2anc 403 . . . . . . 7  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( `  (
0..^ ( M  x.  N ) ) )  =  ( `  (
( 0..^ M )  X.  ( 0..^ N ) ) )  <->  ( 0..^ ( M  x.  N
) )  ~~  (
( 0..^ M )  X.  ( 0..^ N ) ) ) )
130122, 129mpbid 145 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) )
131103, 104, 130syl2an 283 . . . . 5  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) )
1326, 10, 131syl2anc 403 . . . 4  |-  ( ph  ->  ( 0..^ ( M  x.  N ) ) 
~~  ( ( 0..^ M )  X.  (
0..^ N ) ) )
133132, 2, 163brtr4g 3843 . . 3  |-  ( ph  ->  S  ~~  T )
1346nnnn0d 8618 . . . . 5  |-  ( ph  ->  M  e.  NN0 )
13510nnnn0d 8618 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
136134, 135, 127syl2anc 403 . . . 4  |-  ( ph  ->  ( ( 0..^ M )  X.  ( 0..^ N ) )  e. 
Fin )
13716, 136syl5eqel 2169 . . 3  |-  ( ph  ->  T  e.  Fin )
138 f1finf1o 6580 . . 3  |-  ( ( S  ~~  T  /\  T  e.  Fin )  ->  ( F : S -1-1-> T  <-> 
F : S -1-1-onto-> T ) )
139133, 137, 138syl2anc 403 . 2  |-  ( ph  ->  ( F : S -1-1-> T  <-> 
F : S -1-1-onto-> T ) )
140102, 139mpbid 145 1  |-  ( ph  ->  F : S -1-1-onto-> T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   A.wral 2353   _Vcvv 2612   <.cop 3425   class class class wbr 3811    |-> cmpt 3865    X. cxp 4399   -->wf 4965   -1-1->wf1 4966   -1-1-onto->wf1o 4968   ` cfv 4969  (class class class)co 5591    ~~ cen 6385   Fincfn 6387   0cc0 7253   1c1 7254    x. cmul 7258    < clt 7425    <_ cle 7426    - cmin 7556   NNcn 8316   NN0cn0 8565   ZZcz 8646   QQcq 8999  ..^cfzo 9443    mod cmo 9618  ♯chash 10018    || cdvds 10576    gcd cgcd 10718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366  ax-arch 7367  ax-caucvg 7368
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-if 3374  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-frec 6088  df-1o 6113  df-oadd 6117  df-er 6222  df-en 6388  df-dom 6389  df-fin 6390  df-sup 6586  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-2 8375  df-3 8376  df-4 8377  df-n0 8566  df-z 8647  df-uz 8915  df-q 9000  df-rp 9030  df-fz 9320  df-fzo 9444  df-fl 9566  df-mod 9619  df-iseq 9741  df-iexp 9792  df-ihash 10019  df-cj 10103  df-re 10104  df-im 10105  df-rsqrt 10258  df-abs 10259  df-dvds 10577  df-gcd 10719
This theorem is referenced by:  phimullem  10981
  Copyright terms: Public domain W3C validator