ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem6 Unicode version

Theorem 4sqlem6 12383
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
Assertion
Ref Expression
4sqlem6  |-  ( ph  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )

Proof of Theorem 4sqlem6
StepHypRef Expression
1 0red 7960 . . . 4  |-  ( ph  ->  0  e.  RR )
2 4sqlem5.2 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
3 zq 9628 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  QQ )
42, 3syl 14 . . . . . . 7  |-  ( ph  ->  A  e.  QQ )
5 4sqlem5.3 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
65nnzd 9376 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
7 2nn 9082 . . . . . . . 8  |-  2  e.  NN
8 znq 9626 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  2  e.  NN )  ->  ( M  /  2
)  e.  QQ )
96, 7, 8sylancl 413 . . . . . . 7  |-  ( ph  ->  ( M  /  2
)  e.  QQ )
10 qaddcl 9637 . . . . . . 7  |-  ( ( A  e.  QQ  /\  ( M  /  2
)  e.  QQ )  ->  ( A  +  ( M  /  2
) )  e.  QQ )
114, 9, 10syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A  +  ( M  /  2 ) )  e.  QQ )
12 nnq 9635 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  QQ )
135, 12syl 14 . . . . . 6  |-  ( ph  ->  M  e.  QQ )
145nngt0d 8965 . . . . . 6  |-  ( ph  ->  0  <  M )
1511, 13, 14modqcld 10330 . . . . 5  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  QQ )
16 qre 9627 . . . . 5  |-  ( ( ( A  +  ( M  /  2 ) )  mod  M )  e.  QQ  ->  (
( A  +  ( M  /  2 ) )  mod  M )  e.  RR )
1715, 16syl 14 . . . 4  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  RR )
185nnred 8934 . . . . 5  |-  ( ph  ->  M  e.  RR )
1918rehalfcld 9167 . . . 4  |-  ( ph  ->  ( M  /  2
)  e.  RR )
20 modqge0 10334 . . . . 5  |-  ( ( ( A  +  ( M  /  2 ) )  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( ( A  +  ( M  /  2
) )  mod  M
) )
2111, 13, 14, 20syl3anc 1238 . . . 4  |-  ( ph  ->  0  <_  ( ( A  +  ( M  /  2 ) )  mod  M ) )
221, 17, 19, 21lesub1dd 8520 . . 3  |-  ( ph  ->  ( 0  -  ( M  /  2 ) )  <_  ( ( ( A  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) )
23 df-neg 8133 . . 3  |-  -u ( M  /  2 )  =  ( 0  -  ( M  /  2 ) )
24 4sqlem5.4 . . 3  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2522, 23, 243brtr4g 4039 . 2  |-  ( ph  -> 
-u ( M  / 
2 )  <_  B
)
26 modqlt 10335 . . . . . 6  |-  ( ( ( A  +  ( M  /  2 ) )  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  +  ( M  /  2 ) )  mod  M )  <  M )
2711, 13, 14, 26syl3anc 1238 . . . . 5  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  <  M )
285nncnd 8935 . . . . . 6  |-  ( ph  ->  M  e.  CC )
29282halvesd 9166 . . . . 5  |-  ( ph  ->  ( ( M  / 
2 )  +  ( M  /  2 ) )  =  M )
3027, 29breqtrrd 4033 . . . 4  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  <  ( ( M  /  2 )  +  ( M  /  2
) ) )
3117, 19, 19ltsubaddd 8500 . . . 4  |-  ( ph  ->  ( ( ( ( A  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) )  <  ( M  /  2 )  <->  ( ( A  +  ( M  /  2 ) )  mod  M )  < 
( ( M  / 
2 )  +  ( M  /  2 ) ) ) )
3230, 31mpbird 167 . . 3  |-  ( ph  ->  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  <  ( M  / 
2 ) )
3324, 32eqbrtrid 4040 . 2  |-  ( ph  ->  B  <  ( M  /  2 ) )
3425, 33jca 306 1  |-  ( ph  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5877   RRcr 7812   0cc0 7813    + caddc 7816    < clt 7994    <_ cle 7995    - cmin 8130   -ucneg 8131    / cdiv 8631   NNcn 8921   2c2 8972   ZZcz 9255   QQcq 9621    mod cmo 10324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-q 9622  df-rp 9656  df-fl 10272  df-mod 10325
This theorem is referenced by:  4sqlem7  12384  4sqlem10  12387
  Copyright terms: Public domain W3C validator