ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem6 Unicode version

Theorem 4sqlem6 12395
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
Assertion
Ref Expression
4sqlem6  |-  ( ph  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )

Proof of Theorem 4sqlem6
StepHypRef Expression
1 0red 7972 . . . 4  |-  ( ph  ->  0  e.  RR )
2 4sqlem5.2 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
3 zq 9640 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  QQ )
42, 3syl 14 . . . . . . 7  |-  ( ph  ->  A  e.  QQ )
5 4sqlem5.3 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
65nnzd 9388 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
7 2nn 9094 . . . . . . . 8  |-  2  e.  NN
8 znq 9638 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  2  e.  NN )  ->  ( M  /  2
)  e.  QQ )
96, 7, 8sylancl 413 . . . . . . 7  |-  ( ph  ->  ( M  /  2
)  e.  QQ )
10 qaddcl 9649 . . . . . . 7  |-  ( ( A  e.  QQ  /\  ( M  /  2
)  e.  QQ )  ->  ( A  +  ( M  /  2
) )  e.  QQ )
114, 9, 10syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A  +  ( M  /  2 ) )  e.  QQ )
12 nnq 9647 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  QQ )
135, 12syl 14 . . . . . 6  |-  ( ph  ->  M  e.  QQ )
145nngt0d 8977 . . . . . 6  |-  ( ph  ->  0  <  M )
1511, 13, 14modqcld 10342 . . . . 5  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  QQ )
16 qre 9639 . . . . 5  |-  ( ( ( A  +  ( M  /  2 ) )  mod  M )  e.  QQ  ->  (
( A  +  ( M  /  2 ) )  mod  M )  e.  RR )
1715, 16syl 14 . . . 4  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  RR )
185nnred 8946 . . . . 5  |-  ( ph  ->  M  e.  RR )
1918rehalfcld 9179 . . . 4  |-  ( ph  ->  ( M  /  2
)  e.  RR )
20 modqge0 10346 . . . . 5  |-  ( ( ( A  +  ( M  /  2 ) )  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  0  <_  ( ( A  +  ( M  /  2
) )  mod  M
) )
2111, 13, 14, 20syl3anc 1248 . . . 4  |-  ( ph  ->  0  <_  ( ( A  +  ( M  /  2 ) )  mod  M ) )
221, 17, 19, 21lesub1dd 8532 . . 3  |-  ( ph  ->  ( 0  -  ( M  /  2 ) )  <_  ( ( ( A  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) )
23 df-neg 8145 . . 3  |-  -u ( M  /  2 )  =  ( 0  -  ( M  /  2 ) )
24 4sqlem5.4 . . 3  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2522, 23, 243brtr4g 4049 . 2  |-  ( ph  -> 
-u ( M  / 
2 )  <_  B
)
26 modqlt 10347 . . . . . 6  |-  ( ( ( A  +  ( M  /  2 ) )  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  (
( A  +  ( M  /  2 ) )  mod  M )  <  M )
2711, 13, 14, 26syl3anc 1248 . . . . 5  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  <  M )
285nncnd 8947 . . . . . 6  |-  ( ph  ->  M  e.  CC )
29282halvesd 9178 . . . . 5  |-  ( ph  ->  ( ( M  / 
2 )  +  ( M  /  2 ) )  =  M )
3027, 29breqtrrd 4043 . . . 4  |-  ( ph  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  <  ( ( M  /  2 )  +  ( M  /  2
) ) )
3117, 19, 19ltsubaddd 8512 . . . 4  |-  ( ph  ->  ( ( ( ( A  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) )  <  ( M  /  2 )  <->  ( ( A  +  ( M  /  2 ) )  mod  M )  < 
( ( M  / 
2 )  +  ( M  /  2 ) ) ) )
3230, 31mpbird 167 . . 3  |-  ( ph  ->  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  <  ( M  / 
2 ) )
3324, 32eqbrtrid 4050 . 2  |-  ( ph  ->  B  <  ( M  /  2 ) )
3425, 33jca 306 1  |-  ( ph  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   class class class wbr 4015  (class class class)co 5888   RRcr 7824   0cc0 7825    + caddc 7828    < clt 8006    <_ cle 8007    - cmin 8142   -ucneg 8143    / cdiv 8643   NNcn 8933   2c2 8984   ZZcz 9267   QQcq 9633    mod cmo 10336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-n0 9191  df-z 9268  df-q 9634  df-rp 9668  df-fl 10284  df-mod 10337
This theorem is referenced by:  4sqlem7  12396  4sqlem10  12399
  Copyright terms: Public domain W3C validator