ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr3g Unicode version

Theorem 3brtr3g 4015
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr3g.1  |-  ( ph  ->  A R B )
3brtr3g.2  |-  A  =  C
3brtr3g.3  |-  B  =  D
Assertion
Ref Expression
3brtr3g  |-  ( ph  ->  C R D )

Proof of Theorem 3brtr3g
StepHypRef Expression
1 3brtr3g.1 . 2  |-  ( ph  ->  A R B )
2 3brtr3g.2 . . 3  |-  A  =  C
3 3brtr3g.3 . . 3  |-  B  =  D
42, 3breq12i 3991 . 2  |-  ( A R B  <->  C R D )
51, 4sylib 121 1  |-  ( ph  ->  C R D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983
This theorem is referenced by:  eqbrtrrid  4018  breqtrdi  4023  ssenen  6817  endjusym  7061  djuen  7167  ege2le3  11612
  Copyright terms: Public domain W3C validator