![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3brtr4g | GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
Ref | Expression |
---|---|
3brtr4g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr4g.2 | ⊢ 𝐶 = 𝐴 |
3brtr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3brtr4g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3brtr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | breq12i 3902 | . 2 ⊢ (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵) |
5 | 1, 4 | sylibr 133 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1312 class class class wbr 3893 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-un 3039 df-sn 3497 df-pr 3498 df-op 3500 df-br 3894 |
This theorem is referenced by: eqbrtrid 3926 crth 11739 trilpolemgt1 12913 |
Copyright terms: Public domain | W3C validator |