ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr4g GIF version

Theorem 3brtr4g 4067
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr4g.1 (𝜑𝐴𝑅𝐵)
3brtr4g.2 𝐶 = 𝐴
3brtr4g.3 𝐷 = 𝐵
Assertion
Ref Expression
3brtr4g (𝜑𝐶𝑅𝐷)

Proof of Theorem 3brtr4g
StepHypRef Expression
1 3brtr4g.1 . 2 (𝜑𝐴𝑅𝐵)
2 3brtr4g.2 . . 3 𝐶 = 𝐴
3 3brtr4g.3 . . 3 𝐷 = 𝐵
42, 3breq12i 4042 . 2 (𝐶𝑅𝐷𝐴𝑅𝐵)
51, 4sylibr 134 1 (𝜑𝐶𝑅𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  eqbrtrid  4068  enpr2d  6876  crth  12392  4sqlem6  12552  gausslemma2dlem0f  15295  gausslemma2dlem0g  15296  trilpolemgt1  15683
  Copyright terms: Public domain W3C validator