Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  3brtr4g GIF version

Theorem 3brtr4g 3971
 Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.)
Hypotheses
Ref Expression
3brtr4g.1 (𝜑𝐴𝑅𝐵)
3brtr4g.2 𝐶 = 𝐴
3brtr4g.3 𝐷 = 𝐵
Assertion
Ref Expression
3brtr4g (𝜑𝐶𝑅𝐷)

Proof of Theorem 3brtr4g
StepHypRef Expression
1 3brtr4g.1 . 2 (𝜑𝐴𝑅𝐵)
2 3brtr4g.2 . . 3 𝐶 = 𝐴
3 3brtr4g.3 . . 3 𝐷 = 𝐵
42, 3breq12i 3947 . 2 (𝐶𝑅𝐷𝐴𝑅𝐵)
51, 4sylibr 133 1 (𝜑𝐶𝑅𝐷)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1332   class class class wbr 3938 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2692  df-un 3081  df-sn 3539  df-pr 3540  df-op 3542  df-br 3939 This theorem is referenced by:  eqbrtrid  3972  enpr2d  6720  crth  11956  trilpolemgt1  13428
 Copyright terms: Public domain W3C validator