Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3brtr4g | GIF version |
Description: Substitution of equality into both sides of a binary relation. (Contributed by NM, 16-Jan-1997.) |
Ref | Expression |
---|---|
3brtr4g.1 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
3brtr4g.2 | ⊢ 𝐶 = 𝐴 |
3brtr4g.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3brtr4g | ⊢ (𝜑 → 𝐶𝑅𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3brtr4g.1 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
2 | 3brtr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
3 | 3brtr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | breq12i 4007 | . 2 ⊢ (𝐶𝑅𝐷 ↔ 𝐴𝑅𝐵) |
5 | 1, 4 | sylibr 134 | 1 ⊢ (𝜑 → 𝐶𝑅𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 class class class wbr 3998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 |
This theorem is referenced by: eqbrtrid 4033 enpr2d 6807 crth 12189 4sqlem6 12346 trilpolemgt1 14328 |
Copyright terms: Public domain | W3C validator |