ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrid Unicode version

Theorem eqbrtrid 4040
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
eqbrtrid.1  |-  A  =  B
eqbrtrid.2  |-  ( ph  ->  B R C )
Assertion
Ref Expression
eqbrtrid  |-  ( ph  ->  A R C )

Proof of Theorem eqbrtrid
StepHypRef Expression
1 eqbrtrid.2 . 2  |-  ( ph  ->  B R C )
2 eqbrtrid.1 . 2  |-  A  =  B
3 eqid 2177 . 2  |-  C  =  C
41, 2, 33brtr4g 4039 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   class class class wbr 4005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006
This theorem is referenced by:  xp1en  6826  caucvgprlemm  7670  intqfrac2  10322  m1modge3gt1  10374  bernneq2  10645  reccn2ap  11324  eirraplem  11787  nno  11914  oddprmge3  12138  sqnprm  12139  4sqlem6  12384  oddennn  12396  strle2g  12569  strle3g  12570  1strstrg  12578  2strstrg  12580  rngstrg  12596  srngstrd  12607  lmodstrd  12625  ipsstrd  12637  topgrpstrd  12657  psmetge0  13971  reeff1olem  14332  cosq14gt0  14393  cosq34lt1  14411  ioocosf1o  14415  lgseisenlem1  14590  pwf1oexmid  14890  trilpolemeq1  14929
  Copyright terms: Public domain W3C validator