| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrid | Unicode version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrid.1 |
|
| eqbrtrid.2 |
|
| Ref | Expression |
|---|---|
| eqbrtrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrid.2 |
. 2
| |
| 2 | eqbrtrid.1 |
. 2
| |
| 3 | eqid 2229 |
. 2
| |
| 4 | 1, 2, 3 | 3brtr4g 4117 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: rex2dom 6971 xp1en 6982 caucvgprlemm 7855 intqfrac2 10541 m1modge3gt1 10593 bernneq2 10883 reccn2ap 11824 eirraplem 12288 nno 12417 bitsfzolem 12465 bitsinv1lem 12472 oddprmge3 12657 sqnprm 12658 4sqlem6 12906 4sqlem13m 12926 4sqlem16 12929 4sqlem17 12930 2expltfac 12962 oddennn 12963 strle2g 13140 strle3g 13141 1strstrg 13149 2strstrndx 13151 2strstrg 13152 rngstrg 13168 srngstrd 13179 lmodstrd 13197 ipsstrd 13209 topgrpstrd 13229 imasvalstrd 13303 znidom 14621 psmetge0 15005 reeff1olem 15445 cosq14gt0 15506 cosq34lt1 15524 ioocosf1o 15528 mersenne 15671 gausslemma2dlem0c 15730 gausslemma2dlem0e 15732 lgseisenlem1 15749 lgsquadlem1 15756 lgsquadlem2 15757 lgsquadlem3 15758 pwf1oexmid 16365 trilpolemeq1 16408 |
| Copyright terms: Public domain | W3C validator |