ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrid Unicode version

Theorem eqbrtrid 4033
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
eqbrtrid.1  |-  A  =  B
eqbrtrid.2  |-  ( ph  ->  B R C )
Assertion
Ref Expression
eqbrtrid  |-  ( ph  ->  A R C )

Proof of Theorem eqbrtrid
StepHypRef Expression
1 eqbrtrid.2 . 2  |-  ( ph  ->  B R C )
2 eqbrtrid.1 . 2  |-  A  =  B
3 eqid 2175 . 2  |-  C  =  C
41, 2, 33brtr4g 4032 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   class class class wbr 3998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999
This theorem is referenced by:  xp1en  6813  caucvgprlemm  7642  intqfrac2  10287  m1modge3gt1  10339  bernneq2  10609  reccn2ap  11287  eirraplem  11750  nno  11876  oddprmge3  12100  sqnprm  12101  4sqlem6  12346  oddennn  12358  strle2g  12520  strle3g  12521  1strstrg  12527  2strstrg  12529  rngstrg  12544  srngstrd  12551  lmodstrd  12565  ipsstrd  12573  topgrpstrd  12590  psmetge0  13382  reeff1olem  13743  cosq14gt0  13804  cosq34lt1  13822  ioocosf1o  13826  pwf1oexmid  14289  trilpolemeq1  14329
  Copyright terms: Public domain W3C validator