ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrid Unicode version

Theorem eqbrtrid 4017
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
eqbrtrid.1  |-  A  =  B
eqbrtrid.2  |-  ( ph  ->  B R C )
Assertion
Ref Expression
eqbrtrid  |-  ( ph  ->  A R C )

Proof of Theorem eqbrtrid
StepHypRef Expression
1 eqbrtrid.2 . 2  |-  ( ph  ->  B R C )
2 eqbrtrid.1 . 2  |-  A  =  B
3 eqid 2165 . 2  |-  C  =  C
41, 2, 33brtr4g 4016 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983
This theorem is referenced by:  xp1en  6789  caucvgprlemm  7609  intqfrac2  10254  m1modge3gt1  10306  bernneq2  10576  reccn2ap  11254  eirraplem  11717  nno  11843  oddprmge3  12067  sqnprm  12068  4sqlem6  12313  oddennn  12325  strle2g  12486  strle3g  12487  1strstrg  12493  2strstrg  12495  rngstrg  12510  srngstrd  12517  lmodstrd  12528  ipsstrd  12536  topgrpstrd  12546  psmetge0  12981  reeff1olem  13342  cosq14gt0  13403  cosq34lt1  13421  ioocosf1o  13425  pwf1oexmid  13889  trilpolemeq1  13929
  Copyright terms: Public domain W3C validator