| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrid | Unicode version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrid.1 |
|
| eqbrtrid.2 |
|
| Ref | Expression |
|---|---|
| eqbrtrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrid.2 |
. 2
| |
| 2 | eqbrtrid.1 |
. 2
| |
| 3 | eqid 2207 |
. 2
| |
| 4 | 1, 2, 3 | 3brtr4g 4093 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: rex2dom 6934 xp1en 6943 caucvgprlemm 7816 intqfrac2 10501 m1modge3gt1 10553 bernneq2 10843 reccn2ap 11739 eirraplem 12203 nno 12332 bitsfzolem 12380 bitsinv1lem 12387 oddprmge3 12572 sqnprm 12573 4sqlem6 12821 4sqlem13m 12841 4sqlem16 12844 4sqlem17 12845 2expltfac 12877 oddennn 12878 strle2g 13054 strle3g 13055 1strstrg 13063 2strstrndx 13065 2strstrg 13066 rngstrg 13082 srngstrd 13093 lmodstrd 13111 ipsstrd 13123 topgrpstrd 13143 imasvalstrd 13217 znidom 14534 psmetge0 14918 reeff1olem 15358 cosq14gt0 15419 cosq34lt1 15437 ioocosf1o 15441 mersenne 15584 gausslemma2dlem0c 15643 gausslemma2dlem0e 15645 lgseisenlem1 15662 lgsquadlem1 15669 lgsquadlem2 15670 lgsquadlem3 15671 pwf1oexmid 16138 trilpolemeq1 16181 |
| Copyright terms: Public domain | W3C validator |