| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqbrtrid | Unicode version | ||
| Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrid.1 |
|
| eqbrtrid.2 |
|
| Ref | Expression |
|---|---|
| eqbrtrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrid.2 |
. 2
| |
| 2 | eqbrtrid.1 |
. 2
| |
| 3 | eqid 2205 |
. 2
| |
| 4 | 1, 2, 3 | 3brtr4g 4078 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: rex2dom 6910 xp1en 6918 caucvgprlemm 7781 intqfrac2 10464 m1modge3gt1 10516 bernneq2 10806 reccn2ap 11624 eirraplem 12088 nno 12217 bitsfzolem 12265 bitsinv1lem 12272 oddprmge3 12457 sqnprm 12458 4sqlem6 12706 4sqlem13m 12726 4sqlem16 12729 4sqlem17 12730 2expltfac 12762 oddennn 12763 strle2g 12939 strle3g 12940 1strstrg 12948 2strstrndx 12950 2strstrg 12951 rngstrg 12967 srngstrd 12978 lmodstrd 12996 ipsstrd 13008 topgrpstrd 13028 imasvalstrd 13102 znidom 14419 psmetge0 14803 reeff1olem 15243 cosq14gt0 15304 cosq34lt1 15322 ioocosf1o 15326 mersenne 15469 gausslemma2dlem0c 15528 gausslemma2dlem0e 15530 lgseisenlem1 15547 lgsquadlem1 15554 lgsquadlem2 15555 lgsquadlem3 15556 pwf1oexmid 15936 trilpolemeq1 15979 |
| Copyright terms: Public domain | W3C validator |