Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqbrtrid | Unicode version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrid.1 | |
eqbrtrid.2 |
Ref | Expression |
---|---|
eqbrtrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrid.2 | . 2 | |
2 | eqbrtrid.1 | . 2 | |
3 | eqid 2175 | . 2 | |
4 | 1, 2, 3 | 3brtr4g 4032 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 class class class wbr 3998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 |
This theorem is referenced by: xp1en 6813 caucvgprlemm 7642 intqfrac2 10287 m1modge3gt1 10339 bernneq2 10609 reccn2ap 11287 eirraplem 11750 nno 11876 oddprmge3 12100 sqnprm 12101 4sqlem6 12346 oddennn 12358 strle2g 12520 strle3g 12521 1strstrg 12527 2strstrg 12529 rngstrg 12544 srngstrd 12551 lmodstrd 12565 ipsstrd 12573 topgrpstrd 12590 psmetge0 13382 reeff1olem 13743 cosq14gt0 13804 cosq34lt1 13822 ioocosf1o 13826 pwf1oexmid 14289 trilpolemeq1 14329 |
Copyright terms: Public domain | W3C validator |