![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqbrtrid | Unicode version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrid.1 |
![]() ![]() ![]() ![]() |
eqbrtrid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqbrtrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqbrtrid.1 |
. 2
![]() ![]() ![]() ![]() | |
3 | eqid 2193 |
. 2
![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3brtr4g 4064 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 |
This theorem is referenced by: xp1en 6879 caucvgprlemm 7730 intqfrac2 10393 m1modge3gt1 10445 bernneq2 10735 reccn2ap 11459 eirraplem 11923 nno 12050 oddprmge3 12276 sqnprm 12277 4sqlem6 12524 4sqlem13m 12544 4sqlem16 12547 4sqlem17 12548 oddennn 12552 strle2g 12728 strle3g 12729 1strstrg 12737 2strstrg 12739 rngstrg 12755 srngstrd 12766 lmodstrd 12784 ipsstrd 12796 topgrpstrd 12816 znidom 14156 psmetge0 14510 reeff1olem 14947 cosq14gt0 15008 cosq34lt1 15026 ioocosf1o 15030 gausslemma2dlem0c 15208 gausslemma2dlem0e 15210 lgseisenlem1 15227 lgsquadlem1 15234 lgsquadlem2 15235 lgsquadlem3 15236 pwf1oexmid 15560 trilpolemeq1 15600 |
Copyright terms: Public domain | W3C validator |