ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrtrid Unicode version

Theorem eqbrtrid 4024
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.)
Hypotheses
Ref Expression
eqbrtrid.1  |-  A  =  B
eqbrtrid.2  |-  ( ph  ->  B R C )
Assertion
Ref Expression
eqbrtrid  |-  ( ph  ->  A R C )

Proof of Theorem eqbrtrid
StepHypRef Expression
1 eqbrtrid.2 . 2  |-  ( ph  ->  B R C )
2 eqbrtrid.1 . 2  |-  A  =  B
3 eqid 2170 . 2  |-  C  =  C
41, 2, 33brtr4g 4023 1  |-  ( ph  ->  A R C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990
This theorem is referenced by:  xp1en  6801  caucvgprlemm  7630  intqfrac2  10275  m1modge3gt1  10327  bernneq2  10597  reccn2ap  11276  eirraplem  11739  nno  11865  oddprmge3  12089  sqnprm  12090  4sqlem6  12335  oddennn  12347  strle2g  12509  strle3g  12510  1strstrg  12516  2strstrg  12518  rngstrg  12533  srngstrd  12540  lmodstrd  12551  ipsstrd  12559  topgrpstrd  12569  psmetge0  13125  reeff1olem  13486  cosq14gt0  13547  cosq34lt1  13565  ioocosf1o  13569  pwf1oexmid  14032  trilpolemeq1  14072
  Copyright terms: Public domain W3C validator