ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq12i Unicode version

Theorem breq12i 4054
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
breq1i.1  |-  A  =  B
breq12i.2  |-  C  =  D
Assertion
Ref Expression
breq12i  |-  ( A R C  <->  B R D )

Proof of Theorem breq12i
StepHypRef Expression
1 breq1i.1 . 2  |-  A  =  B
2 breq12i.2 . 2  |-  C  =  D
3 breq12 4050 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A R C  <-> 
B R D ) )
41, 2, 3mp2an 426 1  |-  ( A R C  <->  B R D )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   class class class wbr 4045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046
This theorem is referenced by:  3brtr3g  4078  3brtr4g  4079  caovord2  6121  ltneg  8537  leneg  8540  inelr  8659  lt2sqi  10774  le2sqi  10775
  Copyright terms: Public domain W3C validator