ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq12i Unicode version

Theorem breq12i 4014
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Eric Schmidt, 4-Apr-2007.)
Hypotheses
Ref Expression
breq1i.1  |-  A  =  B
breq12i.2  |-  C  =  D
Assertion
Ref Expression
breq12i  |-  ( A R C  <->  B R D )

Proof of Theorem breq12i
StepHypRef Expression
1 breq1i.1 . 2  |-  A  =  B
2 breq12i.2 . 2  |-  C  =  D
3 breq12 4010 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A R C  <-> 
B R D ) )
41, 2, 3mp2an 426 1  |-  ( A R C  <->  B R D )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   class class class wbr 4005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006
This theorem is referenced by:  3brtr3g  4038  3brtr4g  4039  caovord2  6050  ltneg  8422  leneg  8425  inelr  8544  lt2sqi  10611  le2sqi  10612
  Copyright terms: Public domain W3C validator