| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enpr2d | Unicode version | ||
| Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| enpr2d.1 |
|
| enpr2d.2 |
|
| enpr2d.3 |
|
| Ref | Expression |
|---|---|
| enpr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enpr2d.1 |
. . . . 5
| |
| 2 | ensn1g 6947 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | enpr2d.2 |
. . . . 5
| |
| 5 | 1on 6567 |
. . . . 5
| |
| 6 | en2sn 6964 |
. . . . 5
| |
| 7 | 4, 5, 6 | sylancl 413 |
. . . 4
|
| 8 | enpr2d.3 |
. . . . . 6
| |
| 9 | 8 | neqned 2407 |
. . . . 5
|
| 10 | disjsn2 3729 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 5 | onirri 4634 |
. . . . . 6
|
| 13 | 12 | a1i 9 |
. . . . 5
|
| 14 | disjsn 3728 |
. . . . 5
| |
| 15 | 13, 14 | sylibr 134 |
. . . 4
|
| 16 | unen 6967 |
. . . 4
| |
| 17 | 3, 7, 11, 15, 16 | syl22anc 1272 |
. . 3
|
| 18 | df-pr 3673 |
. . 3
| |
| 19 | df-suc 4461 |
. . 3
| |
| 20 | 17, 18, 19 | 3brtr4g 4116 |
. 2
|
| 21 | df-2o 6561 |
. 2
| |
| 22 | 20, 21 | breqtrrdi 4124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-1o 6560 df-2o 6561 df-er 6678 df-en 6886 |
| This theorem is referenced by: isnzr2 14142 |
| Copyright terms: Public domain | W3C validator |