ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enpr2d Unicode version

Theorem enpr2d 6873
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
enpr2d.1  |-  ( ph  ->  A  e.  C )
enpr2d.2  |-  ( ph  ->  B  e.  D )
enpr2d.3  |-  ( ph  ->  -.  A  =  B )
Assertion
Ref Expression
enpr2d  |-  ( ph  ->  { A ,  B }  ~~  2o )

Proof of Theorem enpr2d
StepHypRef Expression
1 enpr2d.1 . . . . 5  |-  ( ph  ->  A  e.  C )
2 ensn1g 6853 . . . . 5  |-  ( A  e.  C  ->  { A }  ~~  1o )
31, 2syl 14 . . . 4  |-  ( ph  ->  { A }  ~~  1o )
4 enpr2d.2 . . . . 5  |-  ( ph  ->  B  e.  D )
5 1on 6478 . . . . 5  |-  1o  e.  On
6 en2sn 6869 . . . . 5  |-  ( ( B  e.  D  /\  1o  e.  On )  ->  { B }  ~~  { 1o } )
74, 5, 6sylancl 413 . . . 4  |-  ( ph  ->  { B }  ~~  { 1o } )
8 enpr2d.3 . . . . . 6  |-  ( ph  ->  -.  A  =  B )
98neqned 2371 . . . . 5  |-  ( ph  ->  A  =/=  B )
10 disjsn2 3682 . . . . 5  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
119, 10syl 14 . . . 4  |-  ( ph  ->  ( { A }  i^i  { B } )  =  (/) )
125onirri 4576 . . . . . 6  |-  -.  1o  e.  1o
1312a1i 9 . . . . 5  |-  ( ph  ->  -.  1o  e.  1o )
14 disjsn 3681 . . . . 5  |-  ( ( 1o  i^i  { 1o } )  =  (/)  <->  -.  1o  e.  1o )
1513, 14sylibr 134 . . . 4  |-  ( ph  ->  ( 1o  i^i  { 1o } )  =  (/) )
16 unen 6872 . . . 4  |-  ( ( ( { A }  ~~  1o  /\  { B }  ~~  { 1o }
)  /\  ( ( { A }  i^i  { B } )  =  (/)  /\  ( 1o  i^i  { 1o } )  =  (/) ) )  ->  ( { A }  u.  { B } )  ~~  ( 1o  u.  { 1o }
) )
173, 7, 11, 15, 16syl22anc 1250 . . 3  |-  ( ph  ->  ( { A }  u.  { B } ) 
~~  ( 1o  u.  { 1o } ) )
18 df-pr 3626 . . 3  |-  { A ,  B }  =  ( { A }  u.  { B } )
19 df-suc 4403 . . 3  |-  suc  1o  =  ( 1o  u.  { 1o } )
2017, 18, 193brtr4g 4064 . 2  |-  ( ph  ->  { A ,  B }  ~~  suc  1o )
21 df-2o 6472 . 2  |-  2o  =  suc  1o
2220, 21breqtrrdi 4072 1  |-  ( ph  ->  { A ,  B }  ~~  2o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    e. wcel 2164    =/= wne 2364    u. cun 3152    i^i cin 3153   (/)c0 3447   {csn 3619   {cpr 3620   class class class wbr 4030   Oncon0 4395   suc csuc 4397   1oc1o 6464   2oc2o 6465    ~~ cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-1o 6471  df-2o 6472  df-er 6589  df-en 6797
This theorem is referenced by:  isnzr2  13683
  Copyright terms: Public domain W3C validator