Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enpr2d | Unicode version |
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
enpr2d.1 | |
enpr2d.2 | |
enpr2d.3 |
Ref | Expression |
---|---|
enpr2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enpr2d.1 | . . . . 5 | |
2 | ensn1g 6763 | . . . . 5 | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | enpr2d.2 | . . . . 5 | |
5 | 1on 6391 | . . . . 5 | |
6 | en2sn 6779 | . . . . 5 | |
7 | 4, 5, 6 | sylancl 410 | . . . 4 |
8 | enpr2d.3 | . . . . . 6 | |
9 | 8 | neqned 2343 | . . . . 5 |
10 | disjsn2 3639 | . . . . 5 | |
11 | 9, 10 | syl 14 | . . . 4 |
12 | 5 | onirri 4520 | . . . . . 6 |
13 | 12 | a1i 9 | . . . . 5 |
14 | disjsn 3638 | . . . . 5 | |
15 | 13, 14 | sylibr 133 | . . . 4 |
16 | unen 6782 | . . . 4 | |
17 | 3, 7, 11, 15, 16 | syl22anc 1229 | . . 3 |
18 | df-pr 3583 | . . 3 | |
19 | df-suc 4349 | . . 3 | |
20 | 17, 18, 19 | 3brtr4g 4016 | . 2 |
21 | df-2o 6385 | . 2 | |
22 | 20, 21 | breqtrrdi 4024 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1343 wcel 2136 wne 2336 cun 3114 cin 3115 c0 3409 csn 3576 cpr 3577 class class class wbr 3982 con0 4341 csuc 4343 c1o 6377 c2o 6378 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |