Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enpr2d | Unicode version |
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
enpr2d.1 | |
enpr2d.2 | |
enpr2d.3 |
Ref | Expression |
---|---|
enpr2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enpr2d.1 | . . . . 5 | |
2 | ensn1g 6775 | . . . . 5 | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | enpr2d.2 | . . . . 5 | |
5 | 1on 6402 | . . . . 5 | |
6 | en2sn 6791 | . . . . 5 | |
7 | 4, 5, 6 | sylancl 411 | . . . 4 |
8 | enpr2d.3 | . . . . . 6 | |
9 | 8 | neqned 2347 | . . . . 5 |
10 | disjsn2 3646 | . . . . 5 | |
11 | 9, 10 | syl 14 | . . . 4 |
12 | 5 | onirri 4527 | . . . . . 6 |
13 | 12 | a1i 9 | . . . . 5 |
14 | disjsn 3645 | . . . . 5 | |
15 | 13, 14 | sylibr 133 | . . . 4 |
16 | unen 6794 | . . . 4 | |
17 | 3, 7, 11, 15, 16 | syl22anc 1234 | . . 3 |
18 | df-pr 3590 | . . 3 | |
19 | df-suc 4356 | . . 3 | |
20 | 17, 18, 19 | 3brtr4g 4023 | . 2 |
21 | df-2o 6396 | . 2 | |
22 | 20, 21 | breqtrrdi 4031 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1348 wcel 2141 wne 2340 cun 3119 cin 3120 c0 3414 csn 3583 cpr 3584 class class class wbr 3989 con0 4348 csuc 4350 c1o 6388 c2o 6389 cen 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-1o 6395 df-2o 6396 df-er 6513 df-en 6719 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |