ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enpr2d Unicode version

Theorem enpr2d 6910
Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
enpr2d.1  |-  ( ph  ->  A  e.  C )
enpr2d.2  |-  ( ph  ->  B  e.  D )
enpr2d.3  |-  ( ph  ->  -.  A  =  B )
Assertion
Ref Expression
enpr2d  |-  ( ph  ->  { A ,  B }  ~~  2o )

Proof of Theorem enpr2d
StepHypRef Expression
1 enpr2d.1 . . . . 5  |-  ( ph  ->  A  e.  C )
2 ensn1g 6888 . . . . 5  |-  ( A  e.  C  ->  { A }  ~~  1o )
31, 2syl 14 . . . 4  |-  ( ph  ->  { A }  ~~  1o )
4 enpr2d.2 . . . . 5  |-  ( ph  ->  B  e.  D )
5 1on 6508 . . . . 5  |-  1o  e.  On
6 en2sn 6904 . . . . 5  |-  ( ( B  e.  D  /\  1o  e.  On )  ->  { B }  ~~  { 1o } )
74, 5, 6sylancl 413 . . . 4  |-  ( ph  ->  { B }  ~~  { 1o } )
8 enpr2d.3 . . . . . 6  |-  ( ph  ->  -.  A  =  B )
98neqned 2382 . . . . 5  |-  ( ph  ->  A  =/=  B )
10 disjsn2 3695 . . . . 5  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
119, 10syl 14 . . . 4  |-  ( ph  ->  ( { A }  i^i  { B } )  =  (/) )
125onirri 4590 . . . . . 6  |-  -.  1o  e.  1o
1312a1i 9 . . . . 5  |-  ( ph  ->  -.  1o  e.  1o )
14 disjsn 3694 . . . . 5  |-  ( ( 1o  i^i  { 1o } )  =  (/)  <->  -.  1o  e.  1o )
1513, 14sylibr 134 . . . 4  |-  ( ph  ->  ( 1o  i^i  { 1o } )  =  (/) )
16 unen 6907 . . . 4  |-  ( ( ( { A }  ~~  1o  /\  { B }  ~~  { 1o }
)  /\  ( ( { A }  i^i  { B } )  =  (/)  /\  ( 1o  i^i  { 1o } )  =  (/) ) )  ->  ( { A }  u.  { B } )  ~~  ( 1o  u.  { 1o }
) )
173, 7, 11, 15, 16syl22anc 1250 . . 3  |-  ( ph  ->  ( { A }  u.  { B } ) 
~~  ( 1o  u.  { 1o } ) )
18 df-pr 3639 . . 3  |-  { A ,  B }  =  ( { A }  u.  { B } )
19 df-suc 4417 . . 3  |-  suc  1o  =  ( 1o  u.  { 1o } )
2017, 18, 193brtr4g 4077 . 2  |-  ( ph  ->  { A ,  B }  ~~  suc  1o )
21 df-2o 6502 . 2  |-  2o  =  suc  1o
2220, 21breqtrrdi 4085 1  |-  ( ph  ->  { A ,  B }  ~~  2o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1372    e. wcel 2175    =/= wne 2375    u. cun 3163    i^i cin 3164   (/)c0 3459   {csn 3632   {cpr 3633   class class class wbr 4043   Oncon0 4409   suc csuc 4411   1oc1o 6494   2oc2o 6495    ~~ cen 6824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-1o 6501  df-2o 6502  df-er 6619  df-en 6827
This theorem is referenced by:  isnzr2  13888
  Copyright terms: Public domain W3C validator