| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enpr2d | Unicode version | ||
| Description: A pair with distinct elements is equinumerous to ordinal two. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| enpr2d.1 |
|
| enpr2d.2 |
|
| enpr2d.3 |
|
| Ref | Expression |
|---|---|
| enpr2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enpr2d.1 |
. . . . 5
| |
| 2 | ensn1g 6902 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | enpr2d.2 |
. . . . 5
| |
| 5 | 1on 6522 |
. . . . 5
| |
| 6 | en2sn 6919 |
. . . . 5
| |
| 7 | 4, 5, 6 | sylancl 413 |
. . . 4
|
| 8 | enpr2d.3 |
. . . . . 6
| |
| 9 | 8 | neqned 2384 |
. . . . 5
|
| 10 | disjsn2 3701 |
. . . . 5
| |
| 11 | 9, 10 | syl 14 |
. . . 4
|
| 12 | 5 | onirri 4599 |
. . . . . 6
|
| 13 | 12 | a1i 9 |
. . . . 5
|
| 14 | disjsn 3700 |
. . . . 5
| |
| 15 | 13, 14 | sylibr 134 |
. . . 4
|
| 16 | unen 6922 |
. . . 4
| |
| 17 | 3, 7, 11, 15, 16 | syl22anc 1251 |
. . 3
|
| 18 | df-pr 3645 |
. . 3
| |
| 19 | df-suc 4426 |
. . 3
| |
| 20 | 17, 18, 19 | 3brtr4g 4085 |
. 2
|
| 21 | df-2o 6516 |
. 2
| |
| 22 | 20, 21 | breqtrrdi 4093 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-1o 6515 df-2o 6516 df-er 6633 df-en 6841 |
| This theorem is referenced by: isnzr2 14021 |
| Copyright terms: Public domain | W3C validator |