ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cofunex2g Unicode version

Theorem cofunex2g 6167
Description: Existence of a composition when the second member is one-to-one. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cofunex2g  |-  ( ( A  e.  V  /\  Fun  `' B )  ->  ( A  o.  B )  e.  _V )

Proof of Theorem cofunex2g
StepHypRef Expression
1 cnvexg 5207 . . . 4  |-  ( A  e.  V  ->  `' A  e.  _V )
2 cofunexg 6166 . . . 4  |-  ( ( Fun  `' B  /\  `' A  e.  _V )  ->  ( `' B  o.  `' A )  e.  _V )
31, 2sylan2 286 . . 3  |-  ( ( Fun  `' B  /\  A  e.  V )  ->  ( `' B  o.  `' A )  e.  _V )
4 cnvco 4851 . . . . 5  |-  `' ( `' B  o.  `' A )  =  ( `' `' A  o.  `' `' B )
5 cocnvcnv2 5181 . . . . 5  |-  ( `' `' A  o.  `' `' B )  =  ( `' `' A  o.  B
)
6 cocnvcnv1 5180 . . . . 5  |-  ( `' `' A  o.  B
)  =  ( A  o.  B )
74, 5, 63eqtrri 2222 . . . 4  |-  ( A  o.  B )  =  `' ( `' B  o.  `' A )
8 cnvexg 5207 . . . 4  |-  ( ( `' B  o.  `' A )  e.  _V  ->  `' ( `' B  o.  `' A )  e.  _V )
97, 8eqeltrid 2283 . . 3  |-  ( ( `' B  o.  `' A )  e.  _V  ->  ( A  o.  B
)  e.  _V )
103, 9syl 14 . 2  |-  ( ( Fun  `' B  /\  A  e.  V )  ->  ( A  o.  B
)  e.  _V )
1110ancoms 268 1  |-  ( ( A  e.  V  /\  Fun  `' B )  ->  ( A  o.  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   _Vcvv 2763   `'ccnv 4662    o. ccom 4667   Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator