ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm2 Unicode version

Theorem dfdm2 5200
Description: Alternate definition of domain df-dm 4669 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2  |-  dom  A  =  U. U. ( `' A  o.  A )

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 4847 . . . . . 6  |-  `' ( `' A  o.  A
)  =  ( `' A  o.  `' `' A )
2 cocnvcnv2 5177 . . . . . 6  |-  ( `' A  o.  `' `' A )  =  ( `' A  o.  A
)
31, 2eqtri 2214 . . . . 5  |-  `' ( `' A  o.  A
)  =  ( `' A  o.  A )
43unieqi 3845 . . . 4  |-  U. `' ( `' A  o.  A
)  =  U. ( `' A  o.  A
)
54unieqi 3845 . . 3  |-  U. U. `' ( `' A  o.  A )  =  U. U. ( `' A  o.  A )
6 unidmrn 5198 . . 3  |-  U. U. `' ( `' A  o.  A )  =  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )
75, 6eqtr3i 2216 . 2  |-  U. U. ( `' A  o.  A
)  =  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )
8 df-rn 4670 . . . . 5  |-  ran  A  =  dom  `' A
98eqcomi 2197 . . . 4  |-  dom  `' A  =  ran  A
10 dmcoeq 4934 . . . 4  |-  ( dom  `' A  =  ran  A  ->  dom  ( `' A  o.  A )  =  dom  A )
119, 10ax-mp 5 . . 3  |-  dom  ( `' A  o.  A
)  =  dom  A
12 rncoeq 4935 . . . . 5  |-  ( dom  `' A  =  ran  A  ->  ran  ( `' A  o.  A )  =  ran  `' A )
139, 12ax-mp 5 . . . 4  |-  ran  ( `' A  o.  A
)  =  ran  `' A
14 dfdm4 4854 . . . 4  |-  dom  A  =  ran  `' A
1513, 14eqtr4i 2217 . . 3  |-  ran  ( `' A  o.  A
)  =  dom  A
1611, 15uneq12i 3311 . 2  |-  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )  =  ( dom  A  u.  dom  A )
17 unidm 3302 . 2  |-  ( dom 
A  u.  dom  A
)  =  dom  A
187, 16, 173eqtrri 2219 1  |-  dom  A  =  U. U. ( `' A  o.  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3151   U.cuni 3835   `'ccnv 4658   dom cdm 4659   ran crn 4660    o. ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator