ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm2 Unicode version

Theorem dfdm2 5133
Description: Alternate definition of domain df-dm 4609 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2  |-  dom  A  =  U. U. ( `' A  o.  A )

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 4784 . . . . . 6  |-  `' ( `' A  o.  A
)  =  ( `' A  o.  `' `' A )
2 cocnvcnv2 5110 . . . . . 6  |-  ( `' A  o.  `' `' A )  =  ( `' A  o.  A
)
31, 2eqtri 2185 . . . . 5  |-  `' ( `' A  o.  A
)  =  ( `' A  o.  A )
43unieqi 3794 . . . 4  |-  U. `' ( `' A  o.  A
)  =  U. ( `' A  o.  A
)
54unieqi 3794 . . 3  |-  U. U. `' ( `' A  o.  A )  =  U. U. ( `' A  o.  A )
6 unidmrn 5131 . . 3  |-  U. U. `' ( `' A  o.  A )  =  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )
75, 6eqtr3i 2187 . 2  |-  U. U. ( `' A  o.  A
)  =  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )
8 df-rn 4610 . . . . 5  |-  ran  A  =  dom  `' A
98eqcomi 2168 . . . 4  |-  dom  `' A  =  ran  A
10 dmcoeq 4871 . . . 4  |-  ( dom  `' A  =  ran  A  ->  dom  ( `' A  o.  A )  =  dom  A )
119, 10ax-mp 5 . . 3  |-  dom  ( `' A  o.  A
)  =  dom  A
12 rncoeq 4872 . . . . 5  |-  ( dom  `' A  =  ran  A  ->  ran  ( `' A  o.  A )  =  ran  `' A )
139, 12ax-mp 5 . . . 4  |-  ran  ( `' A  o.  A
)  =  ran  `' A
14 dfdm4 4791 . . . 4  |-  dom  A  =  ran  `' A
1513, 14eqtr4i 2188 . . 3  |-  ran  ( `' A  o.  A
)  =  dom  A
1611, 15uneq12i 3270 . 2  |-  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )  =  ( dom  A  u.  dom  A )
17 unidm 3261 . 2  |-  ( dom 
A  u.  dom  A
)  =  dom  A
187, 16, 173eqtrri 2190 1  |-  dom  A  =  U. U. ( `' A  o.  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1342    u. cun 3110   U.cuni 3784   `'ccnv 4598   dom cdm 4599   ran crn 4600    o. ccom 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2724  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-res 4611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator