ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm2 Unicode version

Theorem dfdm2 5236
Description: Alternate definition of domain df-dm 4703 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2  |-  dom  A  =  U. U. ( `' A  o.  A )

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 4881 . . . . . 6  |-  `' ( `' A  o.  A
)  =  ( `' A  o.  `' `' A )
2 cocnvcnv2 5213 . . . . . 6  |-  ( `' A  o.  `' `' A )  =  ( `' A  o.  A
)
31, 2eqtri 2228 . . . . 5  |-  `' ( `' A  o.  A
)  =  ( `' A  o.  A )
43unieqi 3874 . . . 4  |-  U. `' ( `' A  o.  A
)  =  U. ( `' A  o.  A
)
54unieqi 3874 . . 3  |-  U. U. `' ( `' A  o.  A )  =  U. U. ( `' A  o.  A )
6 unidmrn 5234 . . 3  |-  U. U. `' ( `' A  o.  A )  =  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )
75, 6eqtr3i 2230 . 2  |-  U. U. ( `' A  o.  A
)  =  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )
8 df-rn 4704 . . . . 5  |-  ran  A  =  dom  `' A
98eqcomi 2211 . . . 4  |-  dom  `' A  =  ran  A
10 dmcoeq 4970 . . . 4  |-  ( dom  `' A  =  ran  A  ->  dom  ( `' A  o.  A )  =  dom  A )
119, 10ax-mp 5 . . 3  |-  dom  ( `' A  o.  A
)  =  dom  A
12 rncoeq 4971 . . . . 5  |-  ( dom  `' A  =  ran  A  ->  ran  ( `' A  o.  A )  =  ran  `' A )
139, 12ax-mp 5 . . . 4  |-  ran  ( `' A  o.  A
)  =  ran  `' A
14 dfdm4 4889 . . . 4  |-  dom  A  =  ran  `' A
1513, 14eqtr4i 2231 . . 3  |-  ran  ( `' A  o.  A
)  =  dom  A
1611, 15uneq12i 3333 . 2  |-  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )  =  ( dom  A  u.  dom  A )
17 unidm 3324 . 2  |-  ( dom 
A  u.  dom  A
)  =  dom  A
187, 16, 173eqtrri 2233 1  |-  dom  A  =  U. U. ( `' A  o.  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3172   U.cuni 3864   `'ccnv 4692   dom cdm 4693   ran crn 4694    o. ccom 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator