ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0.999... Unicode version

Theorem 0.999... 11703
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e.  9  /  1 0 ^ 1  +  9  /  1 0 ^ 2  +  9  / 
1 0 ^ 3  +  ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
0.999...  |-  sum_ k  e.  NN  ( 9  / 
(; 1 0 ^ k
) )  =  1

Proof of Theorem 0.999...
StepHypRef Expression
1 9cn 9095 . . . . . 6  |-  9  e.  CC
21a1i 9 . . . . 5  |-  ( k  e.  NN  ->  9  e.  CC )
3 10re 9492 . . . . . . . 8  |- ; 1 0  e.  RR
43recni 8055 . . . . . . 7  |- ; 1 0  e.  CC
54a1i 9 . . . . . 6  |-  ( k  e.  NN  -> ; 1 0  e.  CC )
6 nnnn0 9273 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  NN0 )
75, 6expcld 10782 . . . . 5  |-  ( k  e.  NN  ->  (; 1 0 ^ k )  e.  CC )
8 10pos 9490 . . . . . . . 8  |-  0  < ; 1
0
93, 8gt0ap0ii 8672 . . . . . . 7  |- ; 1 0 #  0
109a1i 9 . . . . . 6  |-  ( k  e.  NN  -> ; 1 0 #  0 )
11 nnz 9362 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  ZZ )
125, 10, 11expap0d 10788 . . . . 5  |-  ( k  e.  NN  ->  (; 1 0 ^ k ) #  0 )
132, 7, 12divrecapd 8837 . . . 4  |-  ( k  e.  NN  ->  (
9  /  (; 1 0 ^ k
) )  =  ( 9  x.  ( 1  /  (; 1 0 ^ k
) ) ) )
145, 10, 11exprecapd 10790 . . . . 5  |-  ( k  e.  NN  ->  (
( 1  / ; 1 0 ) ^
k )  =  ( 1  /  (; 1 0 ^ k
) ) )
1514oveq2d 5941 . . . 4  |-  ( k  e.  NN  ->  (
9  x.  ( ( 1  / ; 1 0 ) ^
k ) )  =  ( 9  x.  (
1  /  (; 1 0 ^ k
) ) ) )
1613, 15eqtr4d 2232 . . 3  |-  ( k  e.  NN  ->  (
9  /  (; 1 0 ^ k
) )  =  ( 9  x.  ( ( 1  / ; 1 0 ) ^
k ) ) )
1716sumeq2i 11546 . 2  |-  sum_ k  e.  NN  ( 9  / 
(; 1 0 ^ k
) )  =  sum_ k  e.  NN  (
9  x.  ( ( 1  / ; 1 0 ) ^
k ) )
183, 9rerecclapi 8821 . . . . 5  |-  ( 1  / ; 1 0 )  e.  RR
1918recni 8055 . . . 4  |-  ( 1  / ; 1 0 )  e.  CC
20 0re 8043 . . . . . . 7  |-  0  e.  RR
213, 8recgt0ii 8951 . . . . . . 7  |-  0  <  ( 1  / ; 1 0 )
2220, 18, 21ltleii 8146 . . . . . 6  |-  0  <_  ( 1  / ; 1 0 )
2318absidi 11308 . . . . . 6  |-  ( 0  <_  ( 1  / ; 1 0 )  ->  ( abs `  ( 1  / ; 1 0 ) )  =  ( 1  / ; 1 0 ) )
2422, 23ax-mp 5 . . . . 5  |-  ( abs `  ( 1  / ; 1 0 ) )  =  ( 1  / ; 1 0 )
25 1lt10 9612 . . . . . 6  |-  1  < ; 1
0
26 recgt1 8941 . . . . . . 7  |-  ( (; 1
0  e.  RR  /\  0  < ; 1 0 )  -> 
( 1  < ; 1 0  <->  ( 1  / ; 1 0 )  <  1 ) )
273, 8, 26mp2an 426 . . . . . 6  |-  ( 1  < ; 1 0  <->  ( 1  / ; 1 0 )  <  1 )
2825, 27mpbi 145 . . . . 5  |-  ( 1  / ; 1 0 )  <  1
2924, 28eqbrtri 4055 . . . 4  |-  ( abs `  ( 1  / ; 1 0 ) )  <  1
30 geoisum1c 11702 . . . 4  |-  ( ( 9  e.  CC  /\  ( 1  / ; 1 0 )  e.  CC  /\  ( abs `  ( 1  / ; 1 0 ) )  <  1 )  ->  sum_ k  e.  NN  (
9  x.  ( ( 1  / ; 1 0 ) ^
k ) )  =  ( ( 9  x.  ( 1  / ; 1 0 ) )  /  ( 1  -  ( 1  / ; 1 0 ) ) ) )
311, 19, 29, 30mp3an 1348 . . 3  |-  sum_ k  e.  NN  ( 9  x.  ( ( 1  / ; 1 0 ) ^ k ) )  =  ( ( 9  x.  ( 1  / ; 1 0 ) )  /  ( 1  -  ( 1  / ; 1 0 ) ) )
321, 4, 9divrecapi 8801 . . . 4  |-  ( 9  / ; 1 0 )  =  ( 9  x.  (
1  / ; 1 0 ) )
331, 4, 9divcanap2i 8799 . . . . . 6  |-  (; 1 0  x.  (
9  / ; 1 0 ) )  =  9
34 ax-1cn 7989 . . . . . . . 8  |-  1  e.  CC
354, 34, 19subdii 8450 . . . . . . 7  |-  (; 1 0  x.  (
1  -  ( 1  / ; 1 0 ) ) )  =  ( (; 1
0  x.  1 )  -  (; 1 0  x.  (
1  / ; 1 0 ) ) )
364mulridi 8045 . . . . . . . 8  |-  (; 1 0  x.  1 )  = ; 1 0
374, 9recidapi 8787 . . . . . . . 8  |-  (; 1 0  x.  (
1  / ; 1 0 ) )  =  1
3836, 37oveq12i 5937 . . . . . . 7  |-  ( (; 1
0  x.  1 )  -  (; 1 0  x.  (
1  / ; 1 0 ) ) )  =  (; 1 0  -  1 )
39 10m1e9 9569 . . . . . . 7  |-  (; 1 0  -  1 )  =  9
4035, 38, 393eqtrri 2222 . . . . . 6  |-  9  =  (; 1 0  x.  (
1  -  ( 1  / ; 1 0 ) ) )
4133, 40eqtri 2217 . . . . 5  |-  (; 1 0  x.  (
9  / ; 1 0 ) )  =  (; 1 0  x.  (
1  -  ( 1  / ; 1 0 ) ) )
42 9re 9094 . . . . . . . 8  |-  9  e.  RR
4342, 3, 9redivclapi 8823 . . . . . . 7  |-  ( 9  / ; 1 0 )  e.  RR
4443recni 8055 . . . . . 6  |-  ( 9  / ; 1 0 )  e.  CC
4534, 19subcli 8319 . . . . . 6  |-  ( 1  -  ( 1  / ; 1 0 ) )  e.  CC
4644, 45, 4, 9mulcanapi 8711 . . . . 5  |-  ( (; 1
0  x.  ( 9  / ; 1 0 ) )  =  (; 1 0  x.  (
1  -  ( 1  / ; 1 0 ) ) )  <->  ( 9  / ; 1 0 )  =  ( 1  -  ( 1  / ; 1 0 ) ) )
4741, 46mpbi 145 . . . 4  |-  ( 9  / ; 1 0 )  =  ( 1  -  (
1  / ; 1 0 ) )
4832, 47oveq12i 5937 . . 3  |-  ( ( 9  / ; 1 0 )  / 
( 9  / ; 1 0 ) )  =  ( ( 9  x.  ( 1  / ; 1 0 ) )  /  (
1  -  ( 1  / ; 1 0 ) ) )
49 9pos 9111 . . . . . 6  |-  0  <  9
5042, 3, 49, 8divgt0ii 8963 . . . . 5  |-  0  <  ( 9  / ; 1 0 )
5143, 50gt0ap0ii 8672 . . . 4  |-  ( 9  / ; 1 0 ) #  0
5244, 51dividapi 8789 . . 3  |-  ( ( 9  / ; 1 0 )  / 
( 9  / ; 1 0 ) )  =  1
5331, 48, 523eqtr2i 2223 . 2  |-  sum_ k  e.  NN  ( 9  x.  ( ( 1  / ; 1 0 ) ^ k ) )  =  1
5417, 53eqtri 2217 1  |-  sum_ k  e.  NN  ( 9  / 
(; 1 0 ^ k
) )  =  1
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896   1c1 7897    x. cmul 7901    < clt 8078    <_ cle 8079    - cmin 8214   # cap 8625    / cdiv 8716   NNcn 9007   9c9 9065  ;cdc 9474   ^cexp 10647   abscabs 11179   sum_csu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator