ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0.999... Unicode version

Theorem 0.999... 11418
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e.  9  /  1 0 ^ 1  +  9  /  1 0 ^ 2  +  9  / 
1 0 ^ 3  +  ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
0.999...  |-  sum_ k  e.  NN  ( 9  / 
(; 1 0 ^ k
) )  =  1

Proof of Theorem 0.999...
StepHypRef Expression
1 9cn 8921 . . . . . 6  |-  9  e.  CC
21a1i 9 . . . . 5  |-  ( k  e.  NN  ->  9  e.  CC )
3 10re 9313 . . . . . . . 8  |- ; 1 0  e.  RR
43recni 7890 . . . . . . 7  |- ; 1 0  e.  CC
54a1i 9 . . . . . 6  |-  ( k  e.  NN  -> ; 1 0  e.  CC )
6 nnnn0 9097 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  NN0 )
75, 6expcld 10551 . . . . 5  |-  ( k  e.  NN  ->  (; 1 0 ^ k )  e.  CC )
8 10pos 9311 . . . . . . . 8  |-  0  < ; 1
0
93, 8gt0ap0ii 8503 . . . . . . 7  |- ; 1 0 #  0
109a1i 9 . . . . . 6  |-  ( k  e.  NN  -> ; 1 0 #  0 )
11 nnz 9186 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  ZZ )
125, 10, 11expap0d 10557 . . . . 5  |-  ( k  e.  NN  ->  (; 1 0 ^ k ) #  0 )
132, 7, 12divrecapd 8666 . . . 4  |-  ( k  e.  NN  ->  (
9  /  (; 1 0 ^ k
) )  =  ( 9  x.  ( 1  /  (; 1 0 ^ k
) ) ) )
145, 10, 11exprecapd 10559 . . . . 5  |-  ( k  e.  NN  ->  (
( 1  / ; 1 0 ) ^
k )  =  ( 1  /  (; 1 0 ^ k
) ) )
1514oveq2d 5840 . . . 4  |-  ( k  e.  NN  ->  (
9  x.  ( ( 1  / ; 1 0 ) ^
k ) )  =  ( 9  x.  (
1  /  (; 1 0 ^ k
) ) ) )
1613, 15eqtr4d 2193 . . 3  |-  ( k  e.  NN  ->  (
9  /  (; 1 0 ^ k
) )  =  ( 9  x.  ( ( 1  / ; 1 0 ) ^
k ) ) )
1716sumeq2i 11261 . 2  |-  sum_ k  e.  NN  ( 9  / 
(; 1 0 ^ k
) )  =  sum_ k  e.  NN  (
9  x.  ( ( 1  / ; 1 0 ) ^
k ) )
183, 9rerecclapi 8650 . . . . 5  |-  ( 1  / ; 1 0 )  e.  RR
1918recni 7890 . . . 4  |-  ( 1  / ; 1 0 )  e.  CC
20 0re 7878 . . . . . . 7  |-  0  e.  RR
213, 8recgt0ii 8778 . . . . . . 7  |-  0  <  ( 1  / ; 1 0 )
2220, 18, 21ltleii 7979 . . . . . 6  |-  0  <_  ( 1  / ; 1 0 )
2318absidi 11026 . . . . . 6  |-  ( 0  <_  ( 1  / ; 1 0 )  ->  ( abs `  ( 1  / ; 1 0 ) )  =  ( 1  / ; 1 0 ) )
2422, 23ax-mp 5 . . . . 5  |-  ( abs `  ( 1  / ; 1 0 ) )  =  ( 1  / ; 1 0 )
25 1lt10 9433 . . . . . 6  |-  1  < ; 1
0
26 recgt1 8768 . . . . . . 7  |-  ( (; 1
0  e.  RR  /\  0  < ; 1 0 )  -> 
( 1  < ; 1 0  <->  ( 1  / ; 1 0 )  <  1 ) )
273, 8, 26mp2an 423 . . . . . 6  |-  ( 1  < ; 1 0  <->  ( 1  / ; 1 0 )  <  1 )
2825, 27mpbi 144 . . . . 5  |-  ( 1  / ; 1 0 )  <  1
2924, 28eqbrtri 3985 . . . 4  |-  ( abs `  ( 1  / ; 1 0 ) )  <  1
30 geoisum1c 11417 . . . 4  |-  ( ( 9  e.  CC  /\  ( 1  / ; 1 0 )  e.  CC  /\  ( abs `  ( 1  / ; 1 0 ) )  <  1 )  ->  sum_ k  e.  NN  (
9  x.  ( ( 1  / ; 1 0 ) ^
k ) )  =  ( ( 9  x.  ( 1  / ; 1 0 ) )  /  ( 1  -  ( 1  / ; 1 0 ) ) ) )
311, 19, 29, 30mp3an 1319 . . 3  |-  sum_ k  e.  NN  ( 9  x.  ( ( 1  / ; 1 0 ) ^ k ) )  =  ( ( 9  x.  ( 1  / ; 1 0 ) )  /  ( 1  -  ( 1  / ; 1 0 ) ) )
321, 4, 9divrecapi 8630 . . . 4  |-  ( 9  / ; 1 0 )  =  ( 9  x.  (
1  / ; 1 0 ) )
331, 4, 9divcanap2i 8628 . . . . . 6  |-  (; 1 0  x.  (
9  / ; 1 0 ) )  =  9
34 ax-1cn 7825 . . . . . . . 8  |-  1  e.  CC
354, 34, 19subdii 8282 . . . . . . 7  |-  (; 1 0  x.  (
1  -  ( 1  / ; 1 0 ) ) )  =  ( (; 1
0  x.  1 )  -  (; 1 0  x.  (
1  / ; 1 0 ) ) )
364mulid1i 7880 . . . . . . . 8  |-  (; 1 0  x.  1 )  = ; 1 0
374, 9recidapi 8616 . . . . . . . 8  |-  (; 1 0  x.  (
1  / ; 1 0 ) )  =  1
3836, 37oveq12i 5836 . . . . . . 7  |-  ( (; 1
0  x.  1 )  -  (; 1 0  x.  (
1  / ; 1 0 ) ) )  =  (; 1 0  -  1 )
39 10m1e9 9390 . . . . . . 7  |-  (; 1 0  -  1 )  =  9
4035, 38, 393eqtrri 2183 . . . . . 6  |-  9  =  (; 1 0  x.  (
1  -  ( 1  / ; 1 0 ) ) )
4133, 40eqtri 2178 . . . . 5  |-  (; 1 0  x.  (
9  / ; 1 0 ) )  =  (; 1 0  x.  (
1  -  ( 1  / ; 1 0 ) ) )
42 9re 8920 . . . . . . . 8  |-  9  e.  RR
4342, 3, 9redivclapi 8652 . . . . . . 7  |-  ( 9  / ; 1 0 )  e.  RR
4443recni 7890 . . . . . 6  |-  ( 9  / ; 1 0 )  e.  CC
4534, 19subcli 8151 . . . . . 6  |-  ( 1  -  ( 1  / ; 1 0 ) )  e.  CC
4644, 45, 4, 9mulcanapi 8541 . . . . 5  |-  ( (; 1
0  x.  ( 9  / ; 1 0 ) )  =  (; 1 0  x.  (
1  -  ( 1  / ; 1 0 ) ) )  <->  ( 9  / ; 1 0 )  =  ( 1  -  ( 1  / ; 1 0 ) ) )
4741, 46mpbi 144 . . . 4  |-  ( 9  / ; 1 0 )  =  ( 1  -  (
1  / ; 1 0 ) )
4832, 47oveq12i 5836 . . 3  |-  ( ( 9  / ; 1 0 )  / 
( 9  / ; 1 0 ) )  =  ( ( 9  x.  ( 1  / ; 1 0 ) )  /  (
1  -  ( 1  / ; 1 0 ) ) )
49 9pos 8937 . . . . . 6  |-  0  <  9
5042, 3, 49, 8divgt0ii 8790 . . . . 5  |-  0  <  ( 9  / ; 1 0 )
5143, 50gt0ap0ii 8503 . . . 4  |-  ( 9  / ; 1 0 ) #  0
5244, 51dividapi 8618 . . 3  |-  ( ( 9  / ; 1 0 )  / 
( 9  / ; 1 0 ) )  =  1
5331, 48, 523eqtr2i 2184 . 2  |-  sum_ k  e.  NN  ( 9  x.  ( ( 1  / ; 1 0 ) ^ k ) )  =  1
5417, 53eqtri 2178 1  |-  sum_ k  e.  NN  ( 9  / 
(; 1 0 ^ k
) )  =  1
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1335    e. wcel 2128   class class class wbr 3965   ` cfv 5170  (class class class)co 5824   CCcc 7730   RRcr 7731   0cc0 7732   1c1 7733    x. cmul 7737    < clt 7912    <_ cle 7913    - cmin 8046   # cap 8456    / cdiv 8545   NNcn 8833   9c9 8891  ;cdc 9295   ^cexp 10418   abscabs 10897   sum_csu 11250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-isom 5179  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-frec 6338  df-1o 6363  df-oadd 6367  df-er 6480  df-en 6686  df-dom 6687  df-fin 6688  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-5 8895  df-6 8896  df-7 8897  df-8 8898  df-9 8899  df-n0 9091  df-z 9168  df-dec 9296  df-uz 9440  df-q 9529  df-rp 9561  df-fz 9913  df-fzo 10042  df-seqfrec 10345  df-exp 10419  df-ihash 10650  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-clim 11176  df-sumdc 11251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator