ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0.999... Unicode version

Theorem 0.999... 11947
Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e.  9  /  1 0 ^ 1  +  9  /  1 0 ^ 2  +  9  / 
1 0 ^ 3  +  ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
Assertion
Ref Expression
0.999...  |-  sum_ k  e.  NN  ( 9  / 
(; 1 0 ^ k
) )  =  1

Proof of Theorem 0.999...
StepHypRef Expression
1 9cn 9159 . . . . . 6  |-  9  e.  CC
21a1i 9 . . . . 5  |-  ( k  e.  NN  ->  9  e.  CC )
3 10re 9557 . . . . . . . 8  |- ; 1 0  e.  RR
43recni 8119 . . . . . . 7  |- ; 1 0  e.  CC
54a1i 9 . . . . . 6  |-  ( k  e.  NN  -> ; 1 0  e.  CC )
6 nnnn0 9337 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  NN0 )
75, 6expcld 10855 . . . . 5  |-  ( k  e.  NN  ->  (; 1 0 ^ k )  e.  CC )
8 10pos 9555 . . . . . . . 8  |-  0  < ; 1
0
93, 8gt0ap0ii 8736 . . . . . . 7  |- ; 1 0 #  0
109a1i 9 . . . . . 6  |-  ( k  e.  NN  -> ; 1 0 #  0 )
11 nnz 9426 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  ZZ )
125, 10, 11expap0d 10861 . . . . 5  |-  ( k  e.  NN  ->  (; 1 0 ^ k ) #  0 )
132, 7, 12divrecapd 8901 . . . 4  |-  ( k  e.  NN  ->  (
9  /  (; 1 0 ^ k
) )  =  ( 9  x.  ( 1  /  (; 1 0 ^ k
) ) ) )
145, 10, 11exprecapd 10863 . . . . 5  |-  ( k  e.  NN  ->  (
( 1  / ; 1 0 ) ^
k )  =  ( 1  /  (; 1 0 ^ k
) ) )
1514oveq2d 5983 . . . 4  |-  ( k  e.  NN  ->  (
9  x.  ( ( 1  / ; 1 0 ) ^
k ) )  =  ( 9  x.  (
1  /  (; 1 0 ^ k
) ) ) )
1613, 15eqtr4d 2243 . . 3  |-  ( k  e.  NN  ->  (
9  /  (; 1 0 ^ k
) )  =  ( 9  x.  ( ( 1  / ; 1 0 ) ^
k ) ) )
1716sumeq2i 11790 . 2  |-  sum_ k  e.  NN  ( 9  / 
(; 1 0 ^ k
) )  =  sum_ k  e.  NN  (
9  x.  ( ( 1  / ; 1 0 ) ^
k ) )
183, 9rerecclapi 8885 . . . . 5  |-  ( 1  / ; 1 0 )  e.  RR
1918recni 8119 . . . 4  |-  ( 1  / ; 1 0 )  e.  CC
20 0re 8107 . . . . . . 7  |-  0  e.  RR
213, 8recgt0ii 9015 . . . . . . 7  |-  0  <  ( 1  / ; 1 0 )
2220, 18, 21ltleii 8210 . . . . . 6  |-  0  <_  ( 1  / ; 1 0 )
2318absidi 11552 . . . . . 6  |-  ( 0  <_  ( 1  / ; 1 0 )  ->  ( abs `  ( 1  / ; 1 0 ) )  =  ( 1  / ; 1 0 ) )
2422, 23ax-mp 5 . . . . 5  |-  ( abs `  ( 1  / ; 1 0 ) )  =  ( 1  / ; 1 0 )
25 1lt10 9677 . . . . . 6  |-  1  < ; 1
0
26 recgt1 9005 . . . . . . 7  |-  ( (; 1
0  e.  RR  /\  0  < ; 1 0 )  -> 
( 1  < ; 1 0  <->  ( 1  / ; 1 0 )  <  1 ) )
273, 8, 26mp2an 426 . . . . . 6  |-  ( 1  < ; 1 0  <->  ( 1  / ; 1 0 )  <  1 )
2825, 27mpbi 145 . . . . 5  |-  ( 1  / ; 1 0 )  <  1
2924, 28eqbrtri 4080 . . . 4  |-  ( abs `  ( 1  / ; 1 0 ) )  <  1
30 geoisum1c 11946 . . . 4  |-  ( ( 9  e.  CC  /\  ( 1  / ; 1 0 )  e.  CC  /\  ( abs `  ( 1  / ; 1 0 ) )  <  1 )  ->  sum_ k  e.  NN  (
9  x.  ( ( 1  / ; 1 0 ) ^
k ) )  =  ( ( 9  x.  ( 1  / ; 1 0 ) )  /  ( 1  -  ( 1  / ; 1 0 ) ) ) )
311, 19, 29, 30mp3an 1350 . . 3  |-  sum_ k  e.  NN  ( 9  x.  ( ( 1  / ; 1 0 ) ^ k ) )  =  ( ( 9  x.  ( 1  / ; 1 0 ) )  /  ( 1  -  ( 1  / ; 1 0 ) ) )
321, 4, 9divrecapi 8865 . . . 4  |-  ( 9  / ; 1 0 )  =  ( 9  x.  (
1  / ; 1 0 ) )
331, 4, 9divcanap2i 8863 . . . . . 6  |-  (; 1 0  x.  (
9  / ; 1 0 ) )  =  9
34 ax-1cn 8053 . . . . . . . 8  |-  1  e.  CC
354, 34, 19subdii 8514 . . . . . . 7  |-  (; 1 0  x.  (
1  -  ( 1  / ; 1 0 ) ) )  =  ( (; 1
0  x.  1 )  -  (; 1 0  x.  (
1  / ; 1 0 ) ) )
364mulridi 8109 . . . . . . . 8  |-  (; 1 0  x.  1 )  = ; 1 0
374, 9recidapi 8851 . . . . . . . 8  |-  (; 1 0  x.  (
1  / ; 1 0 ) )  =  1
3836, 37oveq12i 5979 . . . . . . 7  |-  ( (; 1
0  x.  1 )  -  (; 1 0  x.  (
1  / ; 1 0 ) ) )  =  (; 1 0  -  1 )
39 10m1e9 9634 . . . . . . 7  |-  (; 1 0  -  1 )  =  9
4035, 38, 393eqtrri 2233 . . . . . 6  |-  9  =  (; 1 0  x.  (
1  -  ( 1  / ; 1 0 ) ) )
4133, 40eqtri 2228 . . . . 5  |-  (; 1 0  x.  (
9  / ; 1 0 ) )  =  (; 1 0  x.  (
1  -  ( 1  / ; 1 0 ) ) )
42 9re 9158 . . . . . . . 8  |-  9  e.  RR
4342, 3, 9redivclapi 8887 . . . . . . 7  |-  ( 9  / ; 1 0 )  e.  RR
4443recni 8119 . . . . . 6  |-  ( 9  / ; 1 0 )  e.  CC
4534, 19subcli 8383 . . . . . 6  |-  ( 1  -  ( 1  / ; 1 0 ) )  e.  CC
4644, 45, 4, 9mulcanapi 8775 . . . . 5  |-  ( (; 1
0  x.  ( 9  / ; 1 0 ) )  =  (; 1 0  x.  (
1  -  ( 1  / ; 1 0 ) ) )  <->  ( 9  / ; 1 0 )  =  ( 1  -  ( 1  / ; 1 0 ) ) )
4741, 46mpbi 145 . . . 4  |-  ( 9  / ; 1 0 )  =  ( 1  -  (
1  / ; 1 0 ) )
4832, 47oveq12i 5979 . . 3  |-  ( ( 9  / ; 1 0 )  / 
( 9  / ; 1 0 ) )  =  ( ( 9  x.  ( 1  / ; 1 0 ) )  /  (
1  -  ( 1  / ; 1 0 ) ) )
49 9pos 9175 . . . . . 6  |-  0  <  9
5042, 3, 49, 8divgt0ii 9027 . . . . 5  |-  0  <  ( 9  / ; 1 0 )
5143, 50gt0ap0ii 8736 . . . 4  |-  ( 9  / ; 1 0 ) #  0
5244, 51dividapi 8853 . . 3  |-  ( ( 9  / ; 1 0 )  / 
( 9  / ; 1 0 ) )  =  1
5331, 48, 523eqtr2i 2234 . 2  |-  sum_ k  e.  NN  ( 9  x.  ( ( 1  / ; 1 0 ) ^ k ) )  =  1
5417, 53eqtri 2228 1  |-  sum_ k  e.  NN  ( 9  / 
(; 1 0 ^ k
) )  =  1
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2178   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278   # cap 8689    / cdiv 8780   NNcn 9071   9c9 9129  ;cdc 9539   ^cexp 10720   abscabs 11423   sum_csu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-dec 9540  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator