ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssoprab2b Unicode version

Theorem ssoprab2b 5828
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 4198. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
ssoprab2b  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } 
<-> 
A. x A. y A. z ( ph  ->  ps ) )

Proof of Theorem ssoprab2b
StepHypRef Expression
1 nfoprab1 5820 . . . 4  |-  F/_ x { <. <. x ,  y
>. ,  z >.  | 
ph }
2 nfoprab1 5820 . . . 4  |-  F/_ x { <. <. x ,  y
>. ,  z >.  |  ps }
31, 2nfss 3090 . . 3  |-  F/ x { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }
4 nfoprab2 5821 . . . . 5  |-  F/_ y { <. <. x ,  y
>. ,  z >.  | 
ph }
5 nfoprab2 5821 . . . . 5  |-  F/_ y { <. <. x ,  y
>. ,  z >.  |  ps }
64, 5nfss 3090 . . . 4  |-  F/ y { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }
7 nfoprab3 5822 . . . . . 6  |-  F/_ z { <. <. x ,  y
>. ,  z >.  | 
ph }
8 nfoprab3 5822 . . . . . 6  |-  F/_ z { <. <. x ,  y
>. ,  z >.  |  ps }
97, 8nfss 3090 . . . . 5  |-  F/ z { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }
10 ssel 3091 . . . . . 6  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  ( <. <. x ,  y >. ,  z
>.  e.  { <. <. x ,  y >. ,  z
>.  |  ph }  ->  <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  |  ps } ) )
11 oprabid 5803 . . . . . 6  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ph )
12 oprabid 5803 . . . . . 6  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  |  ps }  <->  ps )
1310, 11, 123imtr3g 203 . . . . 5  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  ( ph  ->  ps ) )
149, 13alrimi 1502 . . . 4  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  A. z ( ph  ->  ps ) )
156, 14alrimi 1502 . . 3  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  A. y A. z
( ph  ->  ps )
)
163, 15alrimi 1502 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  A. x A. y A. z ( ph  ->  ps ) )
17 ssoprab2 5827 . 2  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } )
1816, 17impbii 125 1  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } 
<-> 
A. x A. y A. z ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1329    e. wcel 1480    C_ wss 3071   <.cop 3530   {coprab 5775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-oprab 5778
This theorem is referenced by:  eqoprab2b  5829
  Copyright terms: Public domain W3C validator