ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssoprab2b Unicode version

Theorem ssoprab2b 6025
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 4341. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Assertion
Ref Expression
ssoprab2b  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } 
<-> 
A. x A. y A. z ( ph  ->  ps ) )

Proof of Theorem ssoprab2b
StepHypRef Expression
1 nfoprab1 6017 . . . 4  |-  F/_ x { <. <. x ,  y
>. ,  z >.  | 
ph }
2 nfoprab1 6017 . . . 4  |-  F/_ x { <. <. x ,  y
>. ,  z >.  |  ps }
31, 2nfss 3194 . . 3  |-  F/ x { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }
4 nfoprab2 6018 . . . . 5  |-  F/_ y { <. <. x ,  y
>. ,  z >.  | 
ph }
5 nfoprab2 6018 . . . . 5  |-  F/_ y { <. <. x ,  y
>. ,  z >.  |  ps }
64, 5nfss 3194 . . . 4  |-  F/ y { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }
7 nfoprab3 6019 . . . . . 6  |-  F/_ z { <. <. x ,  y
>. ,  z >.  | 
ph }
8 nfoprab3 6019 . . . . . 6  |-  F/_ z { <. <. x ,  y
>. ,  z >.  |  ps }
97, 8nfss 3194 . . . . 5  |-  F/ z { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }
10 ssel 3195 . . . . . 6  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  ( <. <. x ,  y >. ,  z
>.  e.  { <. <. x ,  y >. ,  z
>.  |  ph }  ->  <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  |  ps } ) )
11 oprabid 5999 . . . . . 6  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ph )
12 oprabid 5999 . . . . . 6  |-  ( <. <. x ,  y >. ,  z >.  e.  { <. <. x ,  y
>. ,  z >.  |  ps }  <->  ps )
1310, 11, 123imtr3g 204 . . . . 5  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  ( ph  ->  ps ) )
149, 13alrimi 1546 . . . 4  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  A. z ( ph  ->  ps ) )
156, 14alrimi 1546 . . 3  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  A. y A. z
( ph  ->  ps )
)
163, 15alrimi 1546 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  ->  A. x A. y A. z ( ph  ->  ps ) )
17 ssoprab2 6024 . 2  |-  ( A. x A. y A. z
( ph  ->  ps )  ->  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } )
1816, 17impbii 126 1  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } 
<-> 
A. x A. y A. z ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    e. wcel 2178    C_ wss 3174   <.cop 3646   {coprab 5968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-oprab 5971
This theorem is referenced by:  eqoprab2b  6026
  Copyright terms: Public domain W3C validator