ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind Unicode version

Theorem uzind 9558
Description: Induction on the upper integers that start at  M. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
Hypotheses
Ref Expression
uzind.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind.2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
uzind.3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
uzind.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind.5  |-  ( M  e.  ZZ  ->  ps )
uzind.6  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
uzind  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
Distinct variable groups:    j, N    ps, j    ch, j    th, j    ta, j    ph, k    j, k, M
Allowed substitution hints:    ph( j)    ps( k)    ch( k)    th( k)    ta( k)    N( k)

Proof of Theorem uzind
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 zre 9450 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  RR )
21leidd 8661 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  <_  M )
3 uzind.5 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ps )
42, 3jca 306 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  <_  M  /\  ps ) )
54ancli 323 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  ( M  <_  M  /\  ps ) ) )
6 breq2 4087 . . . . . . . . . 10  |-  ( j  =  M  ->  ( M  <_  j  <->  M  <_  M ) )
7 uzind.1 . . . . . . . . . 10  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
86, 7anbi12d 473 . . . . . . . . 9  |-  ( j  =  M  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  M  /\  ps )
) )
98elrab 2959 . . . . . . . 8  |-  ( M  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( M  e.  ZZ  /\  ( M  <_  M  /\  ps ) ) )
105, 9sylibr 134 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  { j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) } )
11 peano2z 9482 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
k  +  1 )  e.  ZZ )
1211a1i 9 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
k  e.  ZZ  ->  ( k  +  1 )  e.  ZZ ) )
1312adantrd 279 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  -> 
( k  +  1 )  e.  ZZ ) )
14 zre 9450 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  k  e.  RR )
15 ltp1 8991 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  RR  ->  k  <  ( k  +  1 ) )
1615adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  k  <  ( k  +  1 ) )
17 peano2re 8282 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
1817ancli 323 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  RR  ->  (
k  e.  RR  /\  ( k  +  1 )  e.  RR ) )
19 lelttr 8235 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  RR  /\  k  e.  RR  /\  (
k  +  1 )  e.  RR )  -> 
( ( M  <_ 
k  /\  k  <  ( k  +  1 ) )  ->  M  <  ( k  +  1 ) ) )
20193expb 1228 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  RR  /\  ( k  e.  RR  /\  ( k  +  1 )  e.  RR ) )  ->  ( ( M  <_  k  /\  k  <  ( k  +  1 ) )  ->  M  <  ( k  +  1 ) ) )
2118, 20sylan2 286 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( ( M  <_ 
k  /\  k  <  ( k  +  1 ) )  ->  M  <  ( k  +  1 ) ) )
2216, 21mpan2d 428 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( M  <_  k  ->  M  <  ( k  +  1 ) ) )
23 ltle 8234 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( M  < 
( k  +  1 )  ->  M  <_  ( k  +  1 ) ) )
2417, 23sylan2 286 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( M  <  (
k  +  1 )  ->  M  <_  (
k  +  1 ) ) )
2522, 24syld 45 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( M  <_  k  ->  M  <_  ( k  +  1 ) ) )
261, 14, 25syl2an 289 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( M  <_  k  ->  M  <_  ( k  +  1 ) ) )
2726adantrd 279 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( M  <_ 
k  /\  ch )  ->  M  <_  ( k  +  1 ) ) )
2827expimpd 363 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  ->  M  <_  ( k  +  1 ) ) )
29 uzind.6 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  ( ch  ->  th ) )
30293exp 1226 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
k  e.  ZZ  ->  ( M  <_  k  ->  ( ch  ->  th )
) ) )
3130imp4d 352 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  ->  th ) )
3228, 31jcad 307 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  -> 
( M  <_  (
k  +  1 )  /\  th ) ) )
3313, 32jcad 307 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  -> 
( ( k  +  1 )  e.  ZZ  /\  ( M  <_  (
k  +  1 )  /\  th ) ) ) )
34 breq2 4087 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( M  <_  j  <->  M  <_  k ) )
35 uzind.2 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
3634, 35anbi12d 473 . . . . . . . . . 10  |-  ( j  =  k  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  k  /\  ch )
) )
3736elrab 2959 . . . . . . . . 9  |-  ( k  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) ) )
38 breq2 4087 . . . . . . . . . . 11  |-  ( j  =  ( k  +  1 )  ->  ( M  <_  j  <->  M  <_  ( k  +  1 ) ) )
39 uzind.3 . . . . . . . . . . 11  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
4038, 39anbi12d 473 . . . . . . . . . 10  |-  ( j  =  ( k  +  1 )  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  ( k  +  1 )  /\  th )
) )
4140elrab 2959 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( ( k  +  1 )  e.  ZZ  /\  ( M  <_  ( k  +  1 )  /\  th ) ) )
4233, 37, 413imtr4g 205 . . . . . . . 8  |-  ( M  e.  ZZ  ->  (
k  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  ->  (
k  +  1 )  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } ) )
4342ralrimiv 2602 . . . . . . 7  |-  ( M  e.  ZZ  ->  A. k  e.  { j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) }  ( k  +  1 )  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } )
44 peano5uzti 9555 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( M  e.  {
j  e.  ZZ  | 
( M  <_  j  /\  ph ) }  /\  A. k  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  ( k  +  1 )  e. 
{ j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) } )  ->  { w  e.  ZZ  |  M  <_  w }  C_  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } ) )
4510, 43, 44mp2and 433 . . . . . 6  |-  ( M  e.  ZZ  ->  { w  e.  ZZ  |  M  <_  w }  C_  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } )
4645sseld 3223 . . . . 5  |-  ( M  e.  ZZ  ->  ( N  e.  { w  e.  ZZ  |  M  <_  w }  ->  N  e. 
{ j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) } ) )
47 breq2 4087 . . . . . 6  |-  ( w  =  N  ->  ( M  <_  w  <->  M  <_  N ) )
4847elrab 2959 . . . . 5  |-  ( N  e.  { w  e.  ZZ  |  M  <_  w }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
49 breq2 4087 . . . . . . 7  |-  ( j  =  N  ->  ( M  <_  j  <->  M  <_  N ) )
50 uzind.4 . . . . . . 7  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
5149, 50anbi12d 473 . . . . . 6  |-  ( j  =  N  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  N  /\  ta )
) )
5251elrab 2959 . . . . 5  |-  ( N  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( N  e.  ZZ  /\  ( M  <_  N  /\  ta ) ) )
5346, 48, 523imtr3g 204 . . . 4  |-  ( M  e.  ZZ  ->  (
( N  e.  ZZ  /\  M  <_  N )  ->  ( N  e.  ZZ  /\  ( M  <_  N  /\  ta ) ) ) )
54533impib 1225 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ( N  e.  ZZ  /\  ( M  <_  N  /\  ta ) ) )
5554simprd 114 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ( M  <_  N  /\  ta ) )
5655simprd 114 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512    C_ wss 3197   class class class wbr 4083  (class class class)co 6001   RRcr 7998   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447
This theorem is referenced by:  uzind2  9559  uzind3  9560  nn0ind  9561  fzind  9562  resqrexlemdecn  11523  algcvga  12573  ennnfoneleminc  12982
  Copyright terms: Public domain W3C validator