ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind Unicode version

Theorem uzind 9437
Description: Induction on the upper integers that start at  M. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
Hypotheses
Ref Expression
uzind.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind.2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
uzind.3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
uzind.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind.5  |-  ( M  e.  ZZ  ->  ps )
uzind.6  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
uzind  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
Distinct variable groups:    j, N    ps, j    ch, j    th, j    ta, j    ph, k    j, k, M
Allowed substitution hints:    ph( j)    ps( k)    ch( k)    th( k)    ta( k)    N( k)

Proof of Theorem uzind
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 zre 9330 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  RR )
21leidd 8541 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  <_  M )
3 uzind.5 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ps )
42, 3jca 306 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  <_  M  /\  ps ) )
54ancli 323 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  ( M  <_  M  /\  ps ) ) )
6 breq2 4037 . . . . . . . . . 10  |-  ( j  =  M  ->  ( M  <_  j  <->  M  <_  M ) )
7 uzind.1 . . . . . . . . . 10  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
86, 7anbi12d 473 . . . . . . . . 9  |-  ( j  =  M  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  M  /\  ps )
) )
98elrab 2920 . . . . . . . 8  |-  ( M  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( M  e.  ZZ  /\  ( M  <_  M  /\  ps ) ) )
105, 9sylibr 134 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  { j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) } )
11 peano2z 9362 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
k  +  1 )  e.  ZZ )
1211a1i 9 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
k  e.  ZZ  ->  ( k  +  1 )  e.  ZZ ) )
1312adantrd 279 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  -> 
( k  +  1 )  e.  ZZ ) )
14 zre 9330 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  k  e.  RR )
15 ltp1 8871 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  RR  ->  k  <  ( k  +  1 ) )
1615adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  k  <  ( k  +  1 ) )
17 peano2re 8162 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
1817ancli 323 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  RR  ->  (
k  e.  RR  /\  ( k  +  1 )  e.  RR ) )
19 lelttr 8115 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  RR  /\  k  e.  RR  /\  (
k  +  1 )  e.  RR )  -> 
( ( M  <_ 
k  /\  k  <  ( k  +  1 ) )  ->  M  <  ( k  +  1 ) ) )
20193expb 1206 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  RR  /\  ( k  e.  RR  /\  ( k  +  1 )  e.  RR ) )  ->  ( ( M  <_  k  /\  k  <  ( k  +  1 ) )  ->  M  <  ( k  +  1 ) ) )
2118, 20sylan2 286 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( ( M  <_ 
k  /\  k  <  ( k  +  1 ) )  ->  M  <  ( k  +  1 ) ) )
2216, 21mpan2d 428 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( M  <_  k  ->  M  <  ( k  +  1 ) ) )
23 ltle 8114 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( M  < 
( k  +  1 )  ->  M  <_  ( k  +  1 ) ) )
2417, 23sylan2 286 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( M  <  (
k  +  1 )  ->  M  <_  (
k  +  1 ) ) )
2522, 24syld 45 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( M  <_  k  ->  M  <_  ( k  +  1 ) ) )
261, 14, 25syl2an 289 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( M  <_  k  ->  M  <_  ( k  +  1 ) ) )
2726adantrd 279 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( M  <_ 
k  /\  ch )  ->  M  <_  ( k  +  1 ) ) )
2827expimpd 363 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  ->  M  <_  ( k  +  1 ) ) )
29 uzind.6 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  ( ch  ->  th ) )
30293exp 1204 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
k  e.  ZZ  ->  ( M  <_  k  ->  ( ch  ->  th )
) ) )
3130imp4d 352 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  ->  th ) )
3228, 31jcad 307 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  -> 
( M  <_  (
k  +  1 )  /\  th ) ) )
3313, 32jcad 307 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  -> 
( ( k  +  1 )  e.  ZZ  /\  ( M  <_  (
k  +  1 )  /\  th ) ) ) )
34 breq2 4037 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( M  <_  j  <->  M  <_  k ) )
35 uzind.2 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
3634, 35anbi12d 473 . . . . . . . . . 10  |-  ( j  =  k  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  k  /\  ch )
) )
3736elrab 2920 . . . . . . . . 9  |-  ( k  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) ) )
38 breq2 4037 . . . . . . . . . . 11  |-  ( j  =  ( k  +  1 )  ->  ( M  <_  j  <->  M  <_  ( k  +  1 ) ) )
39 uzind.3 . . . . . . . . . . 11  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
4038, 39anbi12d 473 . . . . . . . . . 10  |-  ( j  =  ( k  +  1 )  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  ( k  +  1 )  /\  th )
) )
4140elrab 2920 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( ( k  +  1 )  e.  ZZ  /\  ( M  <_  ( k  +  1 )  /\  th ) ) )
4233, 37, 413imtr4g 205 . . . . . . . 8  |-  ( M  e.  ZZ  ->  (
k  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  ->  (
k  +  1 )  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } ) )
4342ralrimiv 2569 . . . . . . 7  |-  ( M  e.  ZZ  ->  A. k  e.  { j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) }  ( k  +  1 )  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } )
44 peano5uzti 9434 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( M  e.  {
j  e.  ZZ  | 
( M  <_  j  /\  ph ) }  /\  A. k  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  ( k  +  1 )  e. 
{ j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) } )  ->  { w  e.  ZZ  |  M  <_  w }  C_  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } ) )
4510, 43, 44mp2and 433 . . . . . 6  |-  ( M  e.  ZZ  ->  { w  e.  ZZ  |  M  <_  w }  C_  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } )
4645sseld 3182 . . . . 5  |-  ( M  e.  ZZ  ->  ( N  e.  { w  e.  ZZ  |  M  <_  w }  ->  N  e. 
{ j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) } ) )
47 breq2 4037 . . . . . 6  |-  ( w  =  N  ->  ( M  <_  w  <->  M  <_  N ) )
4847elrab 2920 . . . . 5  |-  ( N  e.  { w  e.  ZZ  |  M  <_  w }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
49 breq2 4037 . . . . . . 7  |-  ( j  =  N  ->  ( M  <_  j  <->  M  <_  N ) )
50 uzind.4 . . . . . . 7  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
5149, 50anbi12d 473 . . . . . 6  |-  ( j  =  N  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  N  /\  ta )
) )
5251elrab 2920 . . . . 5  |-  ( N  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( N  e.  ZZ  /\  ( M  <_  N  /\  ta ) ) )
5346, 48, 523imtr3g 204 . . . 4  |-  ( M  e.  ZZ  ->  (
( N  e.  ZZ  /\  M  <_  N )  ->  ( N  e.  ZZ  /\  ( M  <_  N  /\  ta ) ) ) )
54533impib 1203 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ( N  e.  ZZ  /\  ( M  <_  N  /\  ta ) ) )
5554simprd 114 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ( M  <_  N  /\  ta ) )
5655simprd 114 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479    C_ wss 3157   class class class wbr 4033  (class class class)co 5922   RRcr 7878   1c1 7880    + caddc 7882    < clt 8061    <_ cle 8062   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  uzind2  9438  uzind3  9439  nn0ind  9440  fzind  9441  resqrexlemdecn  11177  algcvga  12219  ennnfoneleminc  12628
  Copyright terms: Public domain W3C validator