| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzind | Unicode version | ||
| Description: Induction on the upper
integers that start at |
| Ref | Expression |
|---|---|
| uzind.1 |
|
| uzind.2 |
|
| uzind.3 |
|
| uzind.4 |
|
| uzind.5 |
|
| uzind.6 |
|
| Ref | Expression |
|---|---|
| uzind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9411 |
. . . . . . . . . . 11
| |
| 2 | 1 | leidd 8622 |
. . . . . . . . . 10
|
| 3 | uzind.5 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | jca 306 |
. . . . . . . . 9
|
| 5 | 4 | ancli 323 |
. . . . . . . 8
|
| 6 | breq2 4063 |
. . . . . . . . . 10
| |
| 7 | uzind.1 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | anbi12d 473 |
. . . . . . . . 9
|
| 9 | 8 | elrab 2936 |
. . . . . . . 8
|
| 10 | 5, 9 | sylibr 134 |
. . . . . . 7
|
| 11 | peano2z 9443 |
. . . . . . . . . . . 12
| |
| 12 | 11 | a1i 9 |
. . . . . . . . . . 11
|
| 13 | 12 | adantrd 279 |
. . . . . . . . . 10
|
| 14 | zre 9411 |
. . . . . . . . . . . . . 14
| |
| 15 | ltp1 8952 |
. . . . . . . . . . . . . . . . 17
| |
| 16 | 15 | adantl 277 |
. . . . . . . . . . . . . . . 16
|
| 17 | peano2re 8243 |
. . . . . . . . . . . . . . . . . 18
| |
| 18 | 17 | ancli 323 |
. . . . . . . . . . . . . . . . 17
|
| 19 | lelttr 8196 |
. . . . . . . . . . . . . . . . . 18
| |
| 20 | 19 | 3expb 1207 |
. . . . . . . . . . . . . . . . 17
|
| 21 | 18, 20 | sylan2 286 |
. . . . . . . . . . . . . . . 16
|
| 22 | 16, 21 | mpan2d 428 |
. . . . . . . . . . . . . . 15
|
| 23 | ltle 8195 |
. . . . . . . . . . . . . . . 16
| |
| 24 | 17, 23 | sylan2 286 |
. . . . . . . . . . . . . . 15
|
| 25 | 22, 24 | syld 45 |
. . . . . . . . . . . . . 14
|
| 26 | 1, 14, 25 | syl2an 289 |
. . . . . . . . . . . . 13
|
| 27 | 26 | adantrd 279 |
. . . . . . . . . . . 12
|
| 28 | 27 | expimpd 363 |
. . . . . . . . . . 11
|
| 29 | uzind.6 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | 3exp 1205 |
. . . . . . . . . . . 12
|
| 31 | 30 | imp4d 352 |
. . . . . . . . . . 11
|
| 32 | 28, 31 | jcad 307 |
. . . . . . . . . 10
|
| 33 | 13, 32 | jcad 307 |
. . . . . . . . 9
|
| 34 | breq2 4063 |
. . . . . . . . . . 11
| |
| 35 | uzind.2 |
. . . . . . . . . . 11
| |
| 36 | 34, 35 | anbi12d 473 |
. . . . . . . . . 10
|
| 37 | 36 | elrab 2936 |
. . . . . . . . 9
|
| 38 | breq2 4063 |
. . . . . . . . . . 11
| |
| 39 | uzind.3 |
. . . . . . . . . . 11
| |
| 40 | 38, 39 | anbi12d 473 |
. . . . . . . . . 10
|
| 41 | 40 | elrab 2936 |
. . . . . . . . 9
|
| 42 | 33, 37, 41 | 3imtr4g 205 |
. . . . . . . 8
|
| 43 | 42 | ralrimiv 2580 |
. . . . . . 7
|
| 44 | peano5uzti 9516 |
. . . . . . 7
| |
| 45 | 10, 43, 44 | mp2and 433 |
. . . . . 6
|
| 46 | 45 | sseld 3200 |
. . . . 5
|
| 47 | breq2 4063 |
. . . . . 6
| |
| 48 | 47 | elrab 2936 |
. . . . 5
|
| 49 | breq2 4063 |
. . . . . . 7
| |
| 50 | uzind.4 |
. . . . . . 7
| |
| 51 | 49, 50 | anbi12d 473 |
. . . . . 6
|
| 52 | 51 | elrab 2936 |
. . . . 5
|
| 53 | 46, 48, 52 | 3imtr3g 204 |
. . . 4
|
| 54 | 53 | 3impib 1204 |
. . 3
|
| 55 | 54 | simprd 114 |
. 2
|
| 56 | 55 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 |
| This theorem is referenced by: uzind2 9520 uzind3 9521 nn0ind 9522 fzind 9523 resqrexlemdecn 11438 algcvga 12488 ennnfoneleminc 12897 |
| Copyright terms: Public domain | W3C validator |