| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzind | Unicode version | ||
| Description: Induction on the upper
integers that start at |
| Ref | Expression |
|---|---|
| uzind.1 |
|
| uzind.2 |
|
| uzind.3 |
|
| uzind.4 |
|
| uzind.5 |
|
| uzind.6 |
|
| Ref | Expression |
|---|---|
| uzind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9330 |
. . . . . . . . . . 11
| |
| 2 | 1 | leidd 8541 |
. . . . . . . . . 10
|
| 3 | uzind.5 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | jca 306 |
. . . . . . . . 9
|
| 5 | 4 | ancli 323 |
. . . . . . . 8
|
| 6 | breq2 4037 |
. . . . . . . . . 10
| |
| 7 | uzind.1 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | anbi12d 473 |
. . . . . . . . 9
|
| 9 | 8 | elrab 2920 |
. . . . . . . 8
|
| 10 | 5, 9 | sylibr 134 |
. . . . . . 7
|
| 11 | peano2z 9362 |
. . . . . . . . . . . 12
| |
| 12 | 11 | a1i 9 |
. . . . . . . . . . 11
|
| 13 | 12 | adantrd 279 |
. . . . . . . . . 10
|
| 14 | zre 9330 |
. . . . . . . . . . . . . 14
| |
| 15 | ltp1 8871 |
. . . . . . . . . . . . . . . . 17
| |
| 16 | 15 | adantl 277 |
. . . . . . . . . . . . . . . 16
|
| 17 | peano2re 8162 |
. . . . . . . . . . . . . . . . . 18
| |
| 18 | 17 | ancli 323 |
. . . . . . . . . . . . . . . . 17
|
| 19 | lelttr 8115 |
. . . . . . . . . . . . . . . . . 18
| |
| 20 | 19 | 3expb 1206 |
. . . . . . . . . . . . . . . . 17
|
| 21 | 18, 20 | sylan2 286 |
. . . . . . . . . . . . . . . 16
|
| 22 | 16, 21 | mpan2d 428 |
. . . . . . . . . . . . . . 15
|
| 23 | ltle 8114 |
. . . . . . . . . . . . . . . 16
| |
| 24 | 17, 23 | sylan2 286 |
. . . . . . . . . . . . . . 15
|
| 25 | 22, 24 | syld 45 |
. . . . . . . . . . . . . 14
|
| 26 | 1, 14, 25 | syl2an 289 |
. . . . . . . . . . . . 13
|
| 27 | 26 | adantrd 279 |
. . . . . . . . . . . 12
|
| 28 | 27 | expimpd 363 |
. . . . . . . . . . 11
|
| 29 | uzind.6 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | 3exp 1204 |
. . . . . . . . . . . 12
|
| 31 | 30 | imp4d 352 |
. . . . . . . . . . 11
|
| 32 | 28, 31 | jcad 307 |
. . . . . . . . . 10
|
| 33 | 13, 32 | jcad 307 |
. . . . . . . . 9
|
| 34 | breq2 4037 |
. . . . . . . . . . 11
| |
| 35 | uzind.2 |
. . . . . . . . . . 11
| |
| 36 | 34, 35 | anbi12d 473 |
. . . . . . . . . 10
|
| 37 | 36 | elrab 2920 |
. . . . . . . . 9
|
| 38 | breq2 4037 |
. . . . . . . . . . 11
| |
| 39 | uzind.3 |
. . . . . . . . . . 11
| |
| 40 | 38, 39 | anbi12d 473 |
. . . . . . . . . 10
|
| 41 | 40 | elrab 2920 |
. . . . . . . . 9
|
| 42 | 33, 37, 41 | 3imtr4g 205 |
. . . . . . . 8
|
| 43 | 42 | ralrimiv 2569 |
. . . . . . 7
|
| 44 | peano5uzti 9434 |
. . . . . . 7
| |
| 45 | 10, 43, 44 | mp2and 433 |
. . . . . 6
|
| 46 | 45 | sseld 3182 |
. . . . 5
|
| 47 | breq2 4037 |
. . . . . 6
| |
| 48 | 47 | elrab 2920 |
. . . . 5
|
| 49 | breq2 4037 |
. . . . . . 7
| |
| 50 | uzind.4 |
. . . . . . 7
| |
| 51 | 49, 50 | anbi12d 473 |
. . . . . 6
|
| 52 | 51 | elrab 2920 |
. . . . 5
|
| 53 | 46, 48, 52 | 3imtr3g 204 |
. . . 4
|
| 54 | 53 | 3impib 1203 |
. . 3
|
| 55 | 54 | simprd 114 |
. 2
|
| 56 | 55 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 |
| This theorem is referenced by: uzind2 9438 uzind3 9439 nn0ind 9440 fzind 9441 resqrexlemdecn 11177 algcvga 12219 ennnfoneleminc 12628 |
| Copyright terms: Public domain | W3C validator |