| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzind | Unicode version | ||
| Description: Induction on the upper
integers that start at |
| Ref | Expression |
|---|---|
| uzind.1 |
|
| uzind.2 |
|
| uzind.3 |
|
| uzind.4 |
|
| uzind.5 |
|
| uzind.6 |
|
| Ref | Expression |
|---|---|
| uzind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9450 |
. . . . . . . . . . 11
| |
| 2 | 1 | leidd 8661 |
. . . . . . . . . 10
|
| 3 | uzind.5 |
. . . . . . . . . 10
| |
| 4 | 2, 3 | jca 306 |
. . . . . . . . 9
|
| 5 | 4 | ancli 323 |
. . . . . . . 8
|
| 6 | breq2 4087 |
. . . . . . . . . 10
| |
| 7 | uzind.1 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | anbi12d 473 |
. . . . . . . . 9
|
| 9 | 8 | elrab 2959 |
. . . . . . . 8
|
| 10 | 5, 9 | sylibr 134 |
. . . . . . 7
|
| 11 | peano2z 9482 |
. . . . . . . . . . . 12
| |
| 12 | 11 | a1i 9 |
. . . . . . . . . . 11
|
| 13 | 12 | adantrd 279 |
. . . . . . . . . 10
|
| 14 | zre 9450 |
. . . . . . . . . . . . . 14
| |
| 15 | ltp1 8991 |
. . . . . . . . . . . . . . . . 17
| |
| 16 | 15 | adantl 277 |
. . . . . . . . . . . . . . . 16
|
| 17 | peano2re 8282 |
. . . . . . . . . . . . . . . . . 18
| |
| 18 | 17 | ancli 323 |
. . . . . . . . . . . . . . . . 17
|
| 19 | lelttr 8235 |
. . . . . . . . . . . . . . . . . 18
| |
| 20 | 19 | 3expb 1228 |
. . . . . . . . . . . . . . . . 17
|
| 21 | 18, 20 | sylan2 286 |
. . . . . . . . . . . . . . . 16
|
| 22 | 16, 21 | mpan2d 428 |
. . . . . . . . . . . . . . 15
|
| 23 | ltle 8234 |
. . . . . . . . . . . . . . . 16
| |
| 24 | 17, 23 | sylan2 286 |
. . . . . . . . . . . . . . 15
|
| 25 | 22, 24 | syld 45 |
. . . . . . . . . . . . . 14
|
| 26 | 1, 14, 25 | syl2an 289 |
. . . . . . . . . . . . 13
|
| 27 | 26 | adantrd 279 |
. . . . . . . . . . . 12
|
| 28 | 27 | expimpd 363 |
. . . . . . . . . . 11
|
| 29 | uzind.6 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | 3exp 1226 |
. . . . . . . . . . . 12
|
| 31 | 30 | imp4d 352 |
. . . . . . . . . . 11
|
| 32 | 28, 31 | jcad 307 |
. . . . . . . . . 10
|
| 33 | 13, 32 | jcad 307 |
. . . . . . . . 9
|
| 34 | breq2 4087 |
. . . . . . . . . . 11
| |
| 35 | uzind.2 |
. . . . . . . . . . 11
| |
| 36 | 34, 35 | anbi12d 473 |
. . . . . . . . . 10
|
| 37 | 36 | elrab 2959 |
. . . . . . . . 9
|
| 38 | breq2 4087 |
. . . . . . . . . . 11
| |
| 39 | uzind.3 |
. . . . . . . . . . 11
| |
| 40 | 38, 39 | anbi12d 473 |
. . . . . . . . . 10
|
| 41 | 40 | elrab 2959 |
. . . . . . . . 9
|
| 42 | 33, 37, 41 | 3imtr4g 205 |
. . . . . . . 8
|
| 43 | 42 | ralrimiv 2602 |
. . . . . . 7
|
| 44 | peano5uzti 9555 |
. . . . . . 7
| |
| 45 | 10, 43, 44 | mp2and 433 |
. . . . . 6
|
| 46 | 45 | sseld 3223 |
. . . . 5
|
| 47 | breq2 4087 |
. . . . . 6
| |
| 48 | 47 | elrab 2959 |
. . . . 5
|
| 49 | breq2 4087 |
. . . . . . 7
| |
| 50 | uzind.4 |
. . . . . . 7
| |
| 51 | 49, 50 | anbi12d 473 |
. . . . . 6
|
| 52 | 51 | elrab 2959 |
. . . . 5
|
| 53 | 46, 48, 52 | 3imtr3g 204 |
. . . 4
|
| 54 | 53 | 3impib 1225 |
. . 3
|
| 55 | 54 | simprd 114 |
. 2
|
| 56 | 55 | simprd 114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 |
| This theorem is referenced by: uzind2 9559 uzind3 9560 nn0ind 9561 fzind 9562 resqrexlemdecn 11523 algcvga 12573 ennnfoneleminc 12982 |
| Copyright terms: Public domain | W3C validator |