Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uzind | Unicode version |
Description: Induction on the upper integers that start at . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.) |
Ref | Expression |
---|---|
uzind.1 | |
uzind.2 | |
uzind.3 | |
uzind.4 | |
uzind.5 | |
uzind.6 |
Ref | Expression |
---|---|
uzind |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 9150 | . . . . . . . . . . 11 | |
2 | 1 | leidd 8368 | . . . . . . . . . 10 |
3 | uzind.5 | . . . . . . . . . 10 | |
4 | 2, 3 | jca 304 | . . . . . . . . 9 |
5 | 4 | ancli 321 | . . . . . . . 8 |
6 | breq2 3965 | . . . . . . . . . 10 | |
7 | uzind.1 | . . . . . . . . . 10 | |
8 | 6, 7 | anbi12d 465 | . . . . . . . . 9 |
9 | 8 | elrab 2864 | . . . . . . . 8 |
10 | 5, 9 | sylibr 133 | . . . . . . 7 |
11 | peano2z 9182 | . . . . . . . . . . . 12 | |
12 | 11 | a1i 9 | . . . . . . . . . . 11 |
13 | 12 | adantrd 277 | . . . . . . . . . 10 |
14 | zre 9150 | . . . . . . . . . . . . . 14 | |
15 | ltp1 8694 | . . . . . . . . . . . . . . . . 17 | |
16 | 15 | adantl 275 | . . . . . . . . . . . . . . . 16 |
17 | peano2re 7990 | . . . . . . . . . . . . . . . . . 18 | |
18 | 17 | ancli 321 | . . . . . . . . . . . . . . . . 17 |
19 | lelttr 7944 | . . . . . . . . . . . . . . . . . 18 | |
20 | 19 | 3expb 1183 | . . . . . . . . . . . . . . . . 17 |
21 | 18, 20 | sylan2 284 | . . . . . . . . . . . . . . . 16 |
22 | 16, 21 | mpan2d 425 | . . . . . . . . . . . . . . 15 |
23 | ltle 7943 | . . . . . . . . . . . . . . . 16 | |
24 | 17, 23 | sylan2 284 | . . . . . . . . . . . . . . 15 |
25 | 22, 24 | syld 45 | . . . . . . . . . . . . . 14 |
26 | 1, 14, 25 | syl2an 287 | . . . . . . . . . . . . 13 |
27 | 26 | adantrd 277 | . . . . . . . . . . . 12 |
28 | 27 | expimpd 361 | . . . . . . . . . . 11 |
29 | uzind.6 | . . . . . . . . . . . . 13 | |
30 | 29 | 3exp 1181 | . . . . . . . . . . . 12 |
31 | 30 | imp4d 350 | . . . . . . . . . . 11 |
32 | 28, 31 | jcad 305 | . . . . . . . . . 10 |
33 | 13, 32 | jcad 305 | . . . . . . . . 9 |
34 | breq2 3965 | . . . . . . . . . . 11 | |
35 | uzind.2 | . . . . . . . . . . 11 | |
36 | 34, 35 | anbi12d 465 | . . . . . . . . . 10 |
37 | 36 | elrab 2864 | . . . . . . . . 9 |
38 | breq2 3965 | . . . . . . . . . . 11 | |
39 | uzind.3 | . . . . . . . . . . 11 | |
40 | 38, 39 | anbi12d 465 | . . . . . . . . . 10 |
41 | 40 | elrab 2864 | . . . . . . . . 9 |
42 | 33, 37, 41 | 3imtr4g 204 | . . . . . . . 8 |
43 | 42 | ralrimiv 2526 | . . . . . . 7 |
44 | peano5uzti 9251 | . . . . . . 7 | |
45 | 10, 43, 44 | mp2and 430 | . . . . . 6 |
46 | 45 | sseld 3123 | . . . . 5 |
47 | breq2 3965 | . . . . . 6 | |
48 | 47 | elrab 2864 | . . . . 5 |
49 | breq2 3965 | . . . . . . 7 | |
50 | uzind.4 | . . . . . . 7 | |
51 | 49, 50 | anbi12d 465 | . . . . . 6 |
52 | 51 | elrab 2864 | . . . . 5 |
53 | 46, 48, 52 | 3imtr3g 203 | . . . 4 |
54 | 53 | 3impib 1180 | . . 3 |
55 | 54 | simprd 113 | . 2 |
56 | 55 | simprd 113 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1332 wcel 2125 wral 2432 crab 2436 wss 3098 class class class wbr 3961 (class class class)co 5814 cr 7710 c1 7712 caddc 7714 clt 7891 cle 7892 cz 9146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-n0 9070 df-z 9147 |
This theorem is referenced by: uzind2 9255 uzind3 9256 nn0ind 9257 fzind 9258 resqrexlemdecn 10889 algcvga 11900 ennnfoneleminc 12099 |
Copyright terms: Public domain | W3C validator |