ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind Unicode version

Theorem uzind 9113
Description: Induction on the upper integers that start at  M. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.)
Hypotheses
Ref Expression
uzind.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind.2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
uzind.3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
uzind.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind.5  |-  ( M  e.  ZZ  ->  ps )
uzind.6  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
uzind  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
Distinct variable groups:    j, N    ps, j    ch, j    th, j    ta, j    ph, k    j, k, M
Allowed substitution hints:    ph( j)    ps( k)    ch( k)    th( k)    ta( k)    N( k)

Proof of Theorem uzind
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 zre 9009 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  RR )
21leidd 8240 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  <_  M )
3 uzind.5 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ps )
42, 3jca 302 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  <_  M  /\  ps ) )
54ancli 319 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M  e.  ZZ  /\  ( M  <_  M  /\  ps ) ) )
6 breq2 3901 . . . . . . . . . 10  |-  ( j  =  M  ->  ( M  <_  j  <->  M  <_  M ) )
7 uzind.1 . . . . . . . . . 10  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
86, 7anbi12d 462 . . . . . . . . 9  |-  ( j  =  M  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  M  /\  ps )
) )
98elrab 2811 . . . . . . . 8  |-  ( M  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( M  e.  ZZ  /\  ( M  <_  M  /\  ps ) ) )
105, 9sylibr 133 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  { j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) } )
11 peano2z 9041 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  (
k  +  1 )  e.  ZZ )
1211a1i 9 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
k  e.  ZZ  ->  ( k  +  1 )  e.  ZZ ) )
1312adantrd 275 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  -> 
( k  +  1 )  e.  ZZ ) )
14 zre 9009 . . . . . . . . . . . . . 14  |-  ( k  e.  ZZ  ->  k  e.  RR )
15 ltp1 8559 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  RR  ->  k  <  ( k  +  1 ) )
1615adantl 273 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  k  <  ( k  +  1 ) )
17 peano2re 7862 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  RR  ->  (
k  +  1 )  e.  RR )
1817ancli 319 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  RR  ->  (
k  e.  RR  /\  ( k  +  1 )  e.  RR ) )
19 lelttr 7816 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  RR  /\  k  e.  RR  /\  (
k  +  1 )  e.  RR )  -> 
( ( M  <_ 
k  /\  k  <  ( k  +  1 ) )  ->  M  <  ( k  +  1 ) ) )
20193expb 1165 . . . . . . . . . . . . . . . . 17  |-  ( ( M  e.  RR  /\  ( k  e.  RR  /\  ( k  +  1 )  e.  RR ) )  ->  ( ( M  <_  k  /\  k  <  ( k  +  1 ) )  ->  M  <  ( k  +  1 ) ) )
2118, 20sylan2 282 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( ( M  <_ 
k  /\  k  <  ( k  +  1 ) )  ->  M  <  ( k  +  1 ) ) )
2216, 21mpan2d 422 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( M  <_  k  ->  M  <  ( k  +  1 ) ) )
23 ltle 7815 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  RR  /\  ( k  +  1 )  e.  RR )  ->  ( M  < 
( k  +  1 )  ->  M  <_  ( k  +  1 ) ) )
2417, 23sylan2 282 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( M  <  (
k  +  1 )  ->  M  <_  (
k  +  1 ) ) )
2522, 24syld 45 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  k  e.  RR )  ->  ( M  <_  k  ->  M  <_  ( k  +  1 ) ) )
261, 14, 25syl2an 285 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( M  <_  k  ->  M  <_  ( k  +  1 ) ) )
2726adantrd 275 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ )  ->  ( ( M  <_ 
k  /\  ch )  ->  M  <_  ( k  +  1 ) ) )
2827expimpd 358 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  ->  M  <_  ( k  +  1 ) ) )
29 uzind.6 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  ( ch  ->  th ) )
30293exp 1163 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  (
k  e.  ZZ  ->  ( M  <_  k  ->  ( ch  ->  th )
) ) )
3130imp4d 347 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  ->  th ) )
3228, 31jcad 303 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  -> 
( M  <_  (
k  +  1 )  /\  th ) ) )
3313, 32jcad 303 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) )  -> 
( ( k  +  1 )  e.  ZZ  /\  ( M  <_  (
k  +  1 )  /\  th ) ) ) )
34 breq2 3901 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( M  <_  j  <->  M  <_  k ) )
35 uzind.2 . . . . . . . . . . 11  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
3634, 35anbi12d 462 . . . . . . . . . 10  |-  ( j  =  k  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  k  /\  ch )
) )
3736elrab 2811 . . . . . . . . 9  |-  ( k  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( k  e.  ZZ  /\  ( M  <_  k  /\  ch ) ) )
38 breq2 3901 . . . . . . . . . . 11  |-  ( j  =  ( k  +  1 )  ->  ( M  <_  j  <->  M  <_  ( k  +  1 ) ) )
39 uzind.3 . . . . . . . . . . 11  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
4038, 39anbi12d 462 . . . . . . . . . 10  |-  ( j  =  ( k  +  1 )  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  ( k  +  1 )  /\  th )
) )
4140elrab 2811 . . . . . . . . 9  |-  ( ( k  +  1 )  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( ( k  +  1 )  e.  ZZ  /\  ( M  <_  ( k  +  1 )  /\  th ) ) )
4233, 37, 413imtr4g 204 . . . . . . . 8  |-  ( M  e.  ZZ  ->  (
k  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  ->  (
k  +  1 )  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } ) )
4342ralrimiv 2479 . . . . . . 7  |-  ( M  e.  ZZ  ->  A. k  e.  { j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) }  ( k  +  1 )  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } )
44 peano5uzti 9110 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( M  e.  {
j  e.  ZZ  | 
( M  <_  j  /\  ph ) }  /\  A. k  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  ( k  +  1 )  e. 
{ j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) } )  ->  { w  e.  ZZ  |  M  <_  w }  C_  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } ) )
4510, 43, 44mp2and 427 . . . . . 6  |-  ( M  e.  ZZ  ->  { w  e.  ZZ  |  M  <_  w }  C_  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) } )
4645sseld 3064 . . . . 5  |-  ( M  e.  ZZ  ->  ( N  e.  { w  e.  ZZ  |  M  <_  w }  ->  N  e. 
{ j  e.  ZZ  |  ( M  <_ 
j  /\  ph ) } ) )
47 breq2 3901 . . . . . 6  |-  ( w  =  N  ->  ( M  <_  w  <->  M  <_  N ) )
4847elrab 2811 . . . . 5  |-  ( N  e.  { w  e.  ZZ  |  M  <_  w }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
49 breq2 3901 . . . . . . 7  |-  ( j  =  N  ->  ( M  <_  j  <->  M  <_  N ) )
50 uzind.4 . . . . . . 7  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
5149, 50anbi12d 462 . . . . . 6  |-  ( j  =  N  ->  (
( M  <_  j  /\  ph )  <->  ( M  <_  N  /\  ta )
) )
5251elrab 2811 . . . . 5  |-  ( N  e.  { j  e.  ZZ  |  ( M  <_  j  /\  ph ) }  <->  ( N  e.  ZZ  /\  ( M  <_  N  /\  ta ) ) )
5346, 48, 523imtr3g 203 . . . 4  |-  ( M  e.  ZZ  ->  (
( N  e.  ZZ  /\  M  <_  N )  ->  ( N  e.  ZZ  /\  ( M  <_  N  /\  ta ) ) ) )
54533impib 1162 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ( N  e.  ZZ  /\  ( M  <_  N  /\  ta ) ) )
5554simprd 113 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ( M  <_  N  /\  ta ) )
5655simprd 113 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  M  <_  N )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    = wceq 1314    e. wcel 1463   A.wral 2391   {crab 2395    C_ wss 3039   class class class wbr 3897  (class class class)co 5740   RRcr 7583   1c1 7585    + caddc 7587    < clt 7764    <_ cle 7765   ZZcz 9005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8678  df-n0 8929  df-z 9006
This theorem is referenced by:  uzind2  9114  uzind3  9115  nn0ind  9116  fzind  9117  resqrexlemdecn  10724  algcvga  11628  ennnfoneleminc  11819
  Copyright terms: Public domain W3C validator