ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgdvds Unicode version

Theorem subrgdvds 13867
Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdvds.1  |-  S  =  ( Rs  A )
subrgdvds.2  |-  .||  =  (
||r `  R )
subrgdvds.3  |-  E  =  ( ||r `
 S )
Assertion
Ref Expression
subrgdvds  |-  ( A  e.  (SubRing `  R
)  ->  E  C_  .||  )

Proof of Theorem subrgdvds
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgdvds.1 . . . . 5  |-  S  =  ( Rs  A )
21subrgring 13856 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
3 ringsrg 13679 . . . 4  |-  ( S  e.  Ring  ->  S  e. SRing
)
42, 3syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  S  e. SRing )
5 reldvdsrsrg 13724 . . . 4  |-  ( S  e. SRing  ->  Rel  ( ||r `  S
) )
6 subrgdvds.3 . . . . 5  |-  E  =  ( ||r `
 S )
76releqi 4747 . . . 4  |-  ( Rel 
E  <->  Rel  ( ||r `
 S ) )
85, 7sylibr 134 . . 3  |-  ( S  e. SRing  ->  Rel  E )
94, 8syl 14 . 2  |-  ( A  e.  (SubRing `  R
)  ->  Rel  E )
101subrgbas 13862 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
11 eqid 2196 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
1211subrgss 13854 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
1310, 12eqsstrrd 3221 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  C_  ( Base `  R ) )
1413sseld 3183 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  ( Base `  S
)  ->  x  e.  ( Base `  R )
) )
15 subrgrcl 13858 . . . . . . . . . 10  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
16 eqid 2196 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
171, 16ressmulrg 12847 . . . . . . . . . 10  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
1815, 17mpdan 421 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
1918oveqd 5942 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( z
( .r `  R
) x )  =  ( z ( .r
`  S ) x ) )
2019eqeq1d 2205 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( (
z ( .r `  R ) x )  =  y  <->  ( z
( .r `  S
) x )  =  y ) )
2120rexbidv 2498 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( E. z  e.  ( Base `  S ) ( z ( .r `  R
) x )  =  y  <->  E. z  e.  (
Base `  S )
( z ( .r
`  S ) x )  =  y ) )
22 ssrexv 3249 . . . . . . 7  |-  ( (
Base `  S )  C_  ( Base `  R
)  ->  ( E. z  e.  ( Base `  S ) ( z ( .r `  R
) x )  =  y  ->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
2313, 22syl 14 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( E. z  e.  ( Base `  S ) ( z ( .r `  R
) x )  =  y  ->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
2421, 23sylbird 170 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( E. z  e.  ( Base `  S ) ( z ( .r `  S
) x )  =  y  ->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
2514, 24anim12d 335 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( (
x  e.  ( Base `  S )  /\  E. z  e.  ( Base `  S ) ( z ( .r `  S
) x )  =  y )  ->  (
x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) ) )
26 eqidd 2197 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  =  (
Base `  S )
)
276a1i 9 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  E  =  ( ||r `
 S ) )
28 eqidd 2197 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  S )  =  ( .r `  S ) )
2926, 27, 4, 28dvdsrd 13726 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( x E y  <->  ( x  e.  ( Base `  S
)  /\  E. z  e.  ( Base `  S
) ( z ( .r `  S ) x )  =  y ) ) )
30 eqidd 2197 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  R )  =  (
Base `  R )
)
31 subrgdvds.2 . . . . . 6  |-  .||  =  (
||r `  R )
3231a1i 9 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  .||  =  (
||r `  R ) )
33 ringsrg 13679 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
3415, 33syl 14 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  R  e. SRing )
35 eqidd 2197 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  R ) )
3630, 32, 34, 35dvdsrd 13726 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( x  .||  y  <->  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) ) )
3725, 29, 363imtr4d 203 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( x E y  ->  x  .||  y ) )
38 df-br 4035 . . 3  |-  ( x E y  <->  <. x ,  y >.  e.  E
)
39 df-br 4035 . . 3  |-  ( x 
.||  y  <->  <. x ,  y >.  e.  .||  )
4037, 38, 393imtr3g 204 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( <. x ,  y >.  e.  E  -> 
<. x ,  y >.  e.  .||  ) )
419, 40relssdv 4756 1  |-  ( A  e.  (SubRing `  R
)  ->  E  C_  .||  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476    C_ wss 3157   <.cop 3626   class class class wbr 4034   Rel wrel 4669   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   .rcmulr 12781  SRingcsrg 13595   Ringcrg 13628   ||rcdsr 13718  SubRingcsubrg 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-subg 13376  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-dvdsr 13721  df-subrg 13851
This theorem is referenced by:  subrguss  13868
  Copyright terms: Public domain W3C validator