ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgdvds Unicode version

Theorem subrgdvds 14047
Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdvds.1  |-  S  =  ( Rs  A )
subrgdvds.2  |-  .||  =  (
||r `  R )
subrgdvds.3  |-  E  =  ( ||r `
 S )
Assertion
Ref Expression
subrgdvds  |-  ( A  e.  (SubRing `  R
)  ->  E  C_  .||  )

Proof of Theorem subrgdvds
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgdvds.1 . . . . 5  |-  S  =  ( Rs  A )
21subrgring 14036 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
3 ringsrg 13859 . . . 4  |-  ( S  e.  Ring  ->  S  e. SRing
)
42, 3syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  S  e. SRing )
5 reldvdsrsrg 13904 . . . 4  |-  ( S  e. SRing  ->  Rel  ( ||r `  S
) )
6 subrgdvds.3 . . . . 5  |-  E  =  ( ||r `
 S )
76releqi 4763 . . . 4  |-  ( Rel 
E  <->  Rel  ( ||r `
 S ) )
85, 7sylibr 134 . . 3  |-  ( S  e. SRing  ->  Rel  E )
94, 8syl 14 . 2  |-  ( A  e.  (SubRing `  R
)  ->  Rel  E )
101subrgbas 14042 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
11 eqid 2206 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
1211subrgss 14034 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
1310, 12eqsstrrd 3232 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  C_  ( Base `  R ) )
1413sseld 3194 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  ( Base `  S
)  ->  x  e.  ( Base `  R )
) )
15 subrgrcl 14038 . . . . . . . . . 10  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
16 eqid 2206 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
171, 16ressmulrg 13027 . . . . . . . . . 10  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
1815, 17mpdan 421 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
1918oveqd 5971 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( z
( .r `  R
) x )  =  ( z ( .r
`  S ) x ) )
2019eqeq1d 2215 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( (
z ( .r `  R ) x )  =  y  <->  ( z
( .r `  S
) x )  =  y ) )
2120rexbidv 2508 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( E. z  e.  ( Base `  S ) ( z ( .r `  R
) x )  =  y  <->  E. z  e.  (
Base `  S )
( z ( .r
`  S ) x )  =  y ) )
22 ssrexv 3260 . . . . . . 7  |-  ( (
Base `  S )  C_  ( Base `  R
)  ->  ( E. z  e.  ( Base `  S ) ( z ( .r `  R
) x )  =  y  ->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
2313, 22syl 14 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( E. z  e.  ( Base `  S ) ( z ( .r `  R
) x )  =  y  ->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
2421, 23sylbird 170 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( E. z  e.  ( Base `  S ) ( z ( .r `  S
) x )  =  y  ->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
2514, 24anim12d 335 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( (
x  e.  ( Base `  S )  /\  E. z  e.  ( Base `  S ) ( z ( .r `  S
) x )  =  y )  ->  (
x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) ) )
26 eqidd 2207 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  =  (
Base `  S )
)
276a1i 9 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  E  =  ( ||r `
 S ) )
28 eqidd 2207 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  S )  =  ( .r `  S ) )
2926, 27, 4, 28dvdsrd 13906 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( x E y  <->  ( x  e.  ( Base `  S
)  /\  E. z  e.  ( Base `  S
) ( z ( .r `  S ) x )  =  y ) ) )
30 eqidd 2207 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  R )  =  (
Base `  R )
)
31 subrgdvds.2 . . . . . 6  |-  .||  =  (
||r `  R )
3231a1i 9 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  .||  =  (
||r `  R ) )
33 ringsrg 13859 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
3415, 33syl 14 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  R  e. SRing )
35 eqidd 2207 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  R ) )
3630, 32, 34, 35dvdsrd 13906 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( x  .||  y  <->  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) ) )
3725, 29, 363imtr4d 203 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( x E y  ->  x  .||  y ) )
38 df-br 4049 . . 3  |-  ( x E y  <->  <. x ,  y >.  e.  E
)
39 df-br 4049 . . 3  |-  ( x 
.||  y  <->  <. x ,  y >.  e.  .||  )
4037, 38, 393imtr3g 204 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( <. x ,  y >.  e.  E  -> 
<. x ,  y >.  e.  .||  ) )
419, 40relssdv 4772 1  |-  ( A  e.  (SubRing `  R
)  ->  E  C_  .||  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   E.wrex 2486    C_ wss 3168   <.cop 3638   class class class wbr 4048   Rel wrel 4685   ` cfv 5277  (class class class)co 5954   Basecbs 12882   ↾s cress 12883   .rcmulr 12960  SRingcsrg 13775   Ringcrg 13808   ||rcdsr 13898  SubRingcsubrg 14029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-iress 12890  df-plusg 12972  df-mulr 12973  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-grp 13385  df-minusg 13386  df-subg 13556  df-cmn 13672  df-abl 13673  df-mgp 13733  df-ur 13772  df-srg 13776  df-ring 13810  df-dvdsr 13901  df-subrg 14031
This theorem is referenced by:  subrguss  14048
  Copyright terms: Public domain W3C validator