ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgdvds Unicode version

Theorem subrgdvds 13731
Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdvds.1  |-  S  =  ( Rs  A )
subrgdvds.2  |-  .||  =  (
||r `  R )
subrgdvds.3  |-  E  =  ( ||r `
 S )
Assertion
Ref Expression
subrgdvds  |-  ( A  e.  (SubRing `  R
)  ->  E  C_  .||  )

Proof of Theorem subrgdvds
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgdvds.1 . . . . 5  |-  S  =  ( Rs  A )
21subrgring 13720 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
3 ringsrg 13543 . . . 4  |-  ( S  e.  Ring  ->  S  e. SRing
)
42, 3syl 14 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  S  e. SRing )
5 reldvdsrsrg 13588 . . . 4  |-  ( S  e. SRing  ->  Rel  ( ||r `  S
) )
6 subrgdvds.3 . . . . 5  |-  E  =  ( ||r `
 S )
76releqi 4742 . . . 4  |-  ( Rel 
E  <->  Rel  ( ||r `
 S ) )
85, 7sylibr 134 . . 3  |-  ( S  e. SRing  ->  Rel  E )
94, 8syl 14 . 2  |-  ( A  e.  (SubRing `  R
)  ->  Rel  E )
101subrgbas 13726 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
11 eqid 2193 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
1211subrgss 13718 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
1310, 12eqsstrrd 3216 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  C_  ( Base `  R ) )
1413sseld 3178 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( x  e.  ( Base `  S
)  ->  x  e.  ( Base `  R )
) )
15 subrgrcl 13722 . . . . . . . . . 10  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
16 eqid 2193 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
171, 16ressmulrg 12762 . . . . . . . . . 10  |-  ( ( A  e.  (SubRing `  R
)  /\  R  e.  Ring )  ->  ( .r `  R )  =  ( .r `  S ) )
1815, 17mpdan 421 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  S ) )
1918oveqd 5935 . . . . . . . 8  |-  ( A  e.  (SubRing `  R
)  ->  ( z
( .r `  R
) x )  =  ( z ( .r
`  S ) x ) )
2019eqeq1d 2202 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( (
z ( .r `  R ) x )  =  y  <->  ( z
( .r `  S
) x )  =  y ) )
2120rexbidv 2495 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( E. z  e.  ( Base `  S ) ( z ( .r `  R
) x )  =  y  <->  E. z  e.  (
Base `  S )
( z ( .r
`  S ) x )  =  y ) )
22 ssrexv 3244 . . . . . . 7  |-  ( (
Base `  S )  C_  ( Base `  R
)  ->  ( E. z  e.  ( Base `  S ) ( z ( .r `  R
) x )  =  y  ->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
2313, 22syl 14 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  ( E. z  e.  ( Base `  S ) ( z ( .r `  R
) x )  =  y  ->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
2421, 23sylbird 170 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( E. z  e.  ( Base `  S ) ( z ( .r `  S
) x )  =  y  ->  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) )
2514, 24anim12d 335 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( (
x  e.  ( Base `  S )  /\  E. z  e.  ( Base `  S ) ( z ( .r `  S
) x )  =  y )  ->  (
x  e.  ( Base `  R )  /\  E. z  e.  ( Base `  R ) ( z ( .r `  R
) x )  =  y ) ) )
26 eqidd 2194 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  S )  =  (
Base `  S )
)
276a1i 9 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  E  =  ( ||r `
 S ) )
28 eqidd 2194 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  S )  =  ( .r `  S ) )
2926, 27, 4, 28dvdsrd 13590 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( x E y  <->  ( x  e.  ( Base `  S
)  /\  E. z  e.  ( Base `  S
) ( z ( .r `  S ) x )  =  y ) ) )
30 eqidd 2194 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( Base `  R )  =  (
Base `  R )
)
31 subrgdvds.2 . . . . . 6  |-  .||  =  (
||r `  R )
3231a1i 9 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  .||  =  (
||r `  R ) )
33 ringsrg 13543 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
3415, 33syl 14 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  R  e. SRing )
35 eqidd 2194 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  R ) )
3630, 32, 34, 35dvdsrd 13590 . . . 4  |-  ( A  e.  (SubRing `  R
)  ->  ( x  .||  y  <->  ( x  e.  ( Base `  R
)  /\  E. z  e.  ( Base `  R
) ( z ( .r `  R ) x )  =  y ) ) )
3725, 29, 363imtr4d 203 . . 3  |-  ( A  e.  (SubRing `  R
)  ->  ( x E y  ->  x  .||  y ) )
38 df-br 4030 . . 3  |-  ( x E y  <->  <. x ,  y >.  e.  E
)
39 df-br 4030 . . 3  |-  ( x 
.||  y  <->  <. x ,  y >.  e.  .||  )
4037, 38, 393imtr3g 204 . 2  |-  ( A  e.  (SubRing `  R
)  ->  ( <. x ,  y >.  e.  E  -> 
<. x ,  y >.  e.  .||  ) )
419, 40relssdv 4751 1  |-  ( A  e.  (SubRing `  R
)  ->  E  C_  .||  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473    C_ wss 3153   <.cop 3621   class class class wbr 4029   Rel wrel 4664   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   .rcmulr 12696  SRingcsrg 13459   Ringcrg 13492   ||rcdsr 13582  SubRingcsubrg 13713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-dvdsr 13585  df-subrg 13715
This theorem is referenced by:  subrguss  13732
  Copyright terms: Public domain W3C validator