| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4d | Unicode version | ||
| Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3imtr4d.1 |
|
| 3imtr4d.2 |
|
| 3imtr4d.3 |
|
| Ref | Expression |
|---|---|
| 3imtr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4d.2 |
. 2
| |
| 2 | 3imtr4d.1 |
. . 3
| |
| 3 | 3imtr4d.3 |
. . 3
| |
| 4 | 2, 3 | sylibrd 169 |
. 2
|
| 5 | 1, 4 | sylbid 150 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: onsucelsucr 4557 unielrel 5211 ovmpos 6071 caofrss 6192 caoftrn 6193 f1o2ndf1 6316 nnaord 6597 nnmord 6605 oviec 6730 pmss12g 6764 fiss 7081 pm54.43 7300 ltsopi 7435 lttrsr 7877 ltsosr 7879 aptisr 7894 mulextsr1 7896 axpre-mulext 8003 axltwlin 8142 axlttrn 8143 axltadd 8144 axmulgt0 8146 letr 8157 eqord1 8558 remulext1 8674 mulext1 8687 recexap 8728 prodge0 8929 lt2msq 8961 nnge1 9061 zltp1le 9429 uzss 9671 eluzp1m1 9674 xrletr 9932 ixxssixx 10026 zesq 10805 expcanlem 10862 expcan 10863 nn0opthd 10869 maxleast 11557 climshftlemg 11646 dvds1lem 12146 bezoutlemzz 12356 algcvg 12403 eucalgcvga 12413 rpexp12i 12510 crth 12579 pc2dvds 12686 pcmpt 12699 prmpwdvds 12711 1arith 12723 ercpbl 13196 insubm 13350 subginv 13550 rngpropd 13750 dvdsunit 13907 subrgdvds 14030 tgss 14568 neipsm 14659 ssrest 14687 cos11 15358 lgsdir2lem4 15541 gausslemma2dlem1a 15568 m1lgs 15595 |
| Copyright terms: Public domain | W3C validator |