| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4d | Unicode version | ||
| Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3imtr4d.1 |
|
| 3imtr4d.2 |
|
| 3imtr4d.3 |
|
| Ref | Expression |
|---|---|
| 3imtr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4d.2 |
. 2
| |
| 2 | 3imtr4d.1 |
. . 3
| |
| 3 | 3imtr4d.3 |
. . 3
| |
| 4 | 2, 3 | sylibrd 169 |
. 2
|
| 5 | 1, 4 | sylbid 150 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: onsucelsucr 4600 unielrel 5256 ovmpos 6128 caofrss 6250 caoftrn 6251 f1o2ndf1 6374 nnaord 6655 nnmord 6663 oviec 6788 pmss12g 6822 fiss 7144 pm54.43 7363 ltsopi 7507 lttrsr 7949 ltsosr 7951 aptisr 7966 mulextsr1 7968 axpre-mulext 8075 axltwlin 8214 axlttrn 8215 axltadd 8216 axmulgt0 8218 letr 8229 eqord1 8630 remulext1 8746 mulext1 8759 recexap 8800 prodge0 9001 lt2msq 9033 nnge1 9133 zltp1le 9501 uzss 9743 eluzp1m1 9746 xrletr 10004 ixxssixx 10098 zesq 10880 expcanlem 10937 expcan 10938 nn0opthd 10944 wrdind 11254 wrd2ind 11255 pfxccatin12lem3 11264 maxleast 11724 climshftlemg 11813 dvds1lem 12313 bezoutlemzz 12523 algcvg 12570 eucalgcvga 12580 rpexp12i 12677 crth 12746 pc2dvds 12853 pcmpt 12866 prmpwdvds 12878 1arith 12890 ercpbl 13364 insubm 13518 subginv 13718 rngpropd 13918 dvdsunit 14076 subrgdvds 14199 tgss 14737 neipsm 14828 ssrest 14856 cos11 15527 lgsdir2lem4 15710 gausslemma2dlem1a 15737 m1lgs 15764 |
| Copyright terms: Public domain | W3C validator |