Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imtr4d | Unicode version |
Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
Ref | Expression |
---|---|
3imtr4d.1 | |
3imtr4d.2 | |
3imtr4d.3 |
Ref | Expression |
---|---|
3imtr4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4d.2 | . 2 | |
2 | 3imtr4d.1 | . . 3 | |
3 | 3imtr4d.3 | . . 3 | |
4 | 2, 3 | sylibrd 169 | . 2 |
5 | 1, 4 | sylbid 150 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: onsucelsucr 4501 unielrel 5148 ovmpos 5988 caofrss 6097 caoftrn 6098 f1o2ndf1 6219 nnaord 6500 nnmord 6508 oviec 6631 pmss12g 6665 fiss 6966 pm54.43 7179 ltsopi 7294 lttrsr 7736 ltsosr 7738 aptisr 7753 mulextsr1 7755 axpre-mulext 7862 axltwlin 7999 axlttrn 8000 axltadd 8001 axmulgt0 8003 letr 8014 eqord1 8414 remulext1 8530 mulext1 8543 recexap 8583 prodge0 8784 lt2msq 8816 nnge1 8915 zltp1le 9280 uzss 9521 eluzp1m1 9524 xrletr 9779 ixxssixx 9873 zesq 10608 expcanlem 10663 expcan 10664 nn0opthd 10670 maxleast 11190 climshftlemg 11278 dvds1lem 11777 bezoutlemzz 11970 algcvg 12015 eucalgcvga 12025 rpexp12i 12122 crth 12191 pc2dvds 12296 pcmpt 12308 prmpwdvds 12320 1arith 12332 insubm 12734 tgss 13134 neipsm 13225 ssrest 13253 cos11 13845 lgsdir2lem4 14003 |
Copyright terms: Public domain | W3C validator |