| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3imtr4d | Unicode version | ||
| Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) | 
| Ref | Expression | 
|---|---|
| 3imtr4d.1 | 
 | 
| 3imtr4d.2 | 
 | 
| 3imtr4d.3 | 
 | 
| Ref | Expression | 
|---|---|
| 3imtr4d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3imtr4d.2 | 
. 2
 | |
| 2 | 3imtr4d.1 | 
. . 3
 | |
| 3 | 3imtr4d.3 | 
. . 3
 | |
| 4 | 2, 3 | sylibrd 169 | 
. 2
 | 
| 5 | 1, 4 | sylbid 150 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: onsucelsucr 4544 unielrel 5197 ovmpos 6046 caofrss 6162 caoftrn 6163 f1o2ndf1 6286 nnaord 6567 nnmord 6575 oviec 6700 pmss12g 6734 fiss 7043 pm54.43 7257 ltsopi 7387 lttrsr 7829 ltsosr 7831 aptisr 7846 mulextsr1 7848 axpre-mulext 7955 axltwlin 8094 axlttrn 8095 axltadd 8096 axmulgt0 8098 letr 8109 eqord1 8510 remulext1 8626 mulext1 8639 recexap 8680 prodge0 8881 lt2msq 8913 nnge1 9013 zltp1le 9380 uzss 9622 eluzp1m1 9625 xrletr 9883 ixxssixx 9977 zesq 10750 expcanlem 10807 expcan 10808 nn0opthd 10814 maxleast 11378 climshftlemg 11467 dvds1lem 11967 bezoutlemzz 12169 algcvg 12216 eucalgcvga 12226 rpexp12i 12323 crth 12392 pc2dvds 12499 pcmpt 12512 prmpwdvds 12524 1arith 12536 ercpbl 12974 insubm 13117 subginv 13311 rngpropd 13511 dvdsunit 13668 subrgdvds 13791 tgss 14299 neipsm 14390 ssrest 14418 cos11 15089 lgsdir2lem4 15272 gausslemma2dlem1a 15299 m1lgs 15326 | 
| Copyright terms: Public domain | W3C validator |