| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4d | Unicode version | ||
| Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3imtr4d.1 |
|
| 3imtr4d.2 |
|
| 3imtr4d.3 |
|
| Ref | Expression |
|---|---|
| 3imtr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4d.2 |
. 2
| |
| 2 | 3imtr4d.1 |
. . 3
| |
| 3 | 3imtr4d.3 |
. . 3
| |
| 4 | 2, 3 | sylibrd 169 |
. 2
|
| 5 | 1, 4 | sylbid 150 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: onsucelsucr 4545 unielrel 5198 ovmpos 6050 caofrss 6171 caoftrn 6172 f1o2ndf1 6295 nnaord 6576 nnmord 6584 oviec 6709 pmss12g 6743 fiss 7052 pm54.43 7269 ltsopi 7404 lttrsr 7846 ltsosr 7848 aptisr 7863 mulextsr1 7865 axpre-mulext 7972 axltwlin 8111 axlttrn 8112 axltadd 8113 axmulgt0 8115 letr 8126 eqord1 8527 remulext1 8643 mulext1 8656 recexap 8697 prodge0 8898 lt2msq 8930 nnge1 9030 zltp1le 9397 uzss 9639 eluzp1m1 9642 xrletr 9900 ixxssixx 9994 zesq 10767 expcanlem 10824 expcan 10825 nn0opthd 10831 maxleast 11395 climshftlemg 11484 dvds1lem 11984 bezoutlemzz 12194 algcvg 12241 eucalgcvga 12251 rpexp12i 12348 crth 12417 pc2dvds 12524 pcmpt 12537 prmpwdvds 12549 1arith 12561 ercpbl 13033 insubm 13187 subginv 13387 rngpropd 13587 dvdsunit 13744 subrgdvds 13867 tgss 14383 neipsm 14474 ssrest 14502 cos11 15173 lgsdir2lem4 15356 gausslemma2dlem1a 15383 m1lgs 15410 |
| Copyright terms: Public domain | W3C validator |