| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4d | Unicode version | ||
| Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3imtr4d.1 |
|
| 3imtr4d.2 |
|
| 3imtr4d.3 |
|
| Ref | Expression |
|---|---|
| 3imtr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4d.2 |
. 2
| |
| 2 | 3imtr4d.1 |
. . 3
| |
| 3 | 3imtr4d.3 |
. . 3
| |
| 4 | 2, 3 | sylibrd 169 |
. 2
|
| 5 | 1, 4 | sylbid 150 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: onsucelsucr 4556 unielrel 5210 ovmpos 6069 caofrss 6190 caoftrn 6191 f1o2ndf1 6314 nnaord 6595 nnmord 6603 oviec 6728 pmss12g 6762 fiss 7079 pm54.43 7298 ltsopi 7433 lttrsr 7875 ltsosr 7877 aptisr 7892 mulextsr1 7894 axpre-mulext 8001 axltwlin 8140 axlttrn 8141 axltadd 8142 axmulgt0 8144 letr 8155 eqord1 8556 remulext1 8672 mulext1 8685 recexap 8726 prodge0 8927 lt2msq 8959 nnge1 9059 zltp1le 9427 uzss 9669 eluzp1m1 9672 xrletr 9930 ixxssixx 10024 zesq 10803 expcanlem 10860 expcan 10861 nn0opthd 10867 maxleast 11524 climshftlemg 11613 dvds1lem 12113 bezoutlemzz 12323 algcvg 12370 eucalgcvga 12380 rpexp12i 12477 crth 12546 pc2dvds 12653 pcmpt 12666 prmpwdvds 12678 1arith 12690 ercpbl 13163 insubm 13317 subginv 13517 rngpropd 13717 dvdsunit 13874 subrgdvds 13997 tgss 14535 neipsm 14626 ssrest 14654 cos11 15325 lgsdir2lem4 15508 gausslemma2dlem1a 15535 m1lgs 15562 |
| Copyright terms: Public domain | W3C validator |