| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imtr4d | Unicode version | ||
| Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
| Ref | Expression |
|---|---|
| 3imtr4d.1 |
|
| 3imtr4d.2 |
|
| 3imtr4d.3 |
|
| Ref | Expression |
|---|---|
| 3imtr4d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3imtr4d.2 |
. 2
| |
| 2 | 3imtr4d.1 |
. . 3
| |
| 3 | 3imtr4d.3 |
. . 3
| |
| 4 | 2, 3 | sylibrd 169 |
. 2
|
| 5 | 1, 4 | sylbid 150 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: onsucelsucr 4574 unielrel 5229 ovmpos 6092 caofrss 6213 caoftrn 6214 f1o2ndf1 6337 nnaord 6618 nnmord 6626 oviec 6751 pmss12g 6785 fiss 7105 pm54.43 7324 ltsopi 7468 lttrsr 7910 ltsosr 7912 aptisr 7927 mulextsr1 7929 axpre-mulext 8036 axltwlin 8175 axlttrn 8176 axltadd 8177 axmulgt0 8179 letr 8190 eqord1 8591 remulext1 8707 mulext1 8720 recexap 8761 prodge0 8962 lt2msq 8994 nnge1 9094 zltp1le 9462 uzss 9704 eluzp1m1 9707 xrletr 9965 ixxssixx 10059 zesq 10840 expcanlem 10897 expcan 10898 nn0opthd 10904 wrdind 11213 wrd2ind 11214 pfxccatin12lem3 11223 maxleast 11639 climshftlemg 11728 dvds1lem 12228 bezoutlemzz 12438 algcvg 12485 eucalgcvga 12495 rpexp12i 12592 crth 12661 pc2dvds 12768 pcmpt 12781 prmpwdvds 12793 1arith 12805 ercpbl 13278 insubm 13432 subginv 13632 rngpropd 13832 dvdsunit 13989 subrgdvds 14112 tgss 14650 neipsm 14741 ssrest 14769 cos11 15440 lgsdir2lem4 15623 gausslemma2dlem1a 15650 m1lgs 15677 |
| Copyright terms: Public domain | W3C validator |