![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4d | Unicode version |
Description: More general version of 3imtr4i 201. Useful for converting conditional definitions in a formula. (Contributed by NM, 26-Oct-1995.) |
Ref | Expression |
---|---|
3imtr4d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3imtr4d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3imtr4d.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3imtr4d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3imtr4d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3imtr4d.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylibrd 169 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | sylbid 150 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: onsucelsucr 4540 unielrel 5193 ovmpos 6042 caofrss 6157 caoftrn 6158 f1o2ndf1 6281 nnaord 6562 nnmord 6570 oviec 6695 pmss12g 6729 fiss 7036 pm54.43 7250 ltsopi 7380 lttrsr 7822 ltsosr 7824 aptisr 7839 mulextsr1 7841 axpre-mulext 7948 axltwlin 8087 axlttrn 8088 axltadd 8089 axmulgt0 8091 letr 8102 eqord1 8502 remulext1 8618 mulext1 8631 recexap 8672 prodge0 8873 lt2msq 8905 nnge1 9005 zltp1le 9371 uzss 9613 eluzp1m1 9616 xrletr 9874 ixxssixx 9968 zesq 10729 expcanlem 10786 expcan 10787 nn0opthd 10793 maxleast 11357 climshftlemg 11445 dvds1lem 11945 bezoutlemzz 12139 algcvg 12186 eucalgcvga 12196 rpexp12i 12293 crth 12362 pc2dvds 12468 pcmpt 12481 prmpwdvds 12493 1arith 12505 ercpbl 12914 insubm 13057 subginv 13251 rngpropd 13451 dvdsunit 13608 subrgdvds 13731 tgss 14231 neipsm 14322 ssrest 14350 cos11 14988 lgsdir2lem4 15147 gausslemma2dlem1a 15174 m1lgs 15192 |
Copyright terms: Public domain | W3C validator |