ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2add Unicode version

Theorem dvds2add 11835
Description: If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2add  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  +  N )
) )

Proof of Theorem dvds2add
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 994 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  M  e.  ZZ ) )
2 3simpb 995 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
3 zaddcl 9296 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
43anim2i 342 . . 3  |-  ( ( K  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( K  e.  ZZ  /\  ( M  +  N )  e.  ZZ ) )
543impb 1199 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  ( M  +  N )  e.  ZZ ) )
6 zaddcl 9296 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  y )  e.  ZZ )
76adantl 277 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  +  y )  e.  ZZ )
8 zcn 9261 . . . . . . . 8  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 9261 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
10 zcn 9261 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
11 adddir 7951 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  +  y )  x.  K )  =  ( ( x  x.  K )  +  ( y  x.  K
) ) )
128, 9, 10, 11syl3an 1280 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ  /\  K  e.  ZZ )  ->  (
( x  +  y )  x.  K )  =  ( ( x  x.  K )  +  ( y  x.  K
) ) )
13123comr 1211 . . . . . 6  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  +  y )  x.  K )  =  ( ( x  x.  K )  +  ( y  x.  K
) ) )
14133expb 1204 . . . . 5  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  +  y )  x.  K )  =  ( ( x  x.  K )  +  ( y  x.  K ) ) )
15 oveq12 5887 . . . . 5  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( x  x.  K )  +  ( y  x.  K
) )  =  ( M  +  N ) )
1614, 15sylan9eq 2230 . . . 4  |-  ( ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( ( x  x.  K )  =  M  /\  (
y  x.  K )  =  N ) )  ->  ( ( x  +  y )  x.  K )  =  ( M  +  N ) )
1716ex 115 . . 3  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( x  +  y )  x.  K )  =  ( M  +  N ) ) )
18173ad2antl1 1159 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( x  +  y )  x.  K )  =  ( M  +  N ) ) )
191, 2, 5, 7, 18dvds2lem 11813 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  +  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5878   CCcc 7812    + caddc 7817    x. cmul 7819   ZZcz 9256    || cdvds 11797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-dvds 11798
This theorem is referenced by:  dvds2addd  11839  dvdssub2  11845  dvdsadd2b  11850  bezoutlemstep  12001  bezoutlembi  12009  dvdsmulgcd  12029  bezoutr  12036  pythagtriplem19  12285
  Copyright terms: Public domain W3C validator