| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvds2add | Unicode version | ||
| Description: If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvds2add |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 996 |
. 2
| |
| 2 | 3simpb 997 |
. 2
| |
| 3 | zaddcl 9385 |
. . . 4
| |
| 4 | 3 | anim2i 342 |
. . 3
|
| 5 | 4 | 3impb 1201 |
. 2
|
| 6 | zaddcl 9385 |
. . 3
| |
| 7 | 6 | adantl 277 |
. 2
|
| 8 | zcn 9350 |
. . . . . . . 8
| |
| 9 | zcn 9350 |
. . . . . . . 8
| |
| 10 | zcn 9350 |
. . . . . . . 8
| |
| 11 | adddir 8036 |
. . . . . . . 8
| |
| 12 | 8, 9, 10, 11 | syl3an 1291 |
. . . . . . 7
|
| 13 | 12 | 3comr 1213 |
. . . . . 6
|
| 14 | 13 | 3expb 1206 |
. . . . 5
|
| 15 | oveq12 5934 |
. . . . 5
| |
| 16 | 14, 15 | sylan9eq 2249 |
. . . 4
|
| 17 | 16 | ex 115 |
. . 3
|
| 18 | 17 | 3ad2antl1 1161 |
. 2
|
| 19 | 1, 2, 5, 7, 18 | dvds2lem 11987 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 df-dvds 11972 |
| This theorem is referenced by: dvds2addd 12013 dvdssub2 12019 dvdsadd2b 12024 bezoutlemstep 12191 bezoutlembi 12199 dvdsmulgcd 12219 bezoutr 12226 pythagtriplem19 12478 4sqlem16 12602 dec2dvds 12607 lgsquadlem1 15426 |
| Copyright terms: Public domain | W3C validator |