ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2add Unicode version

Theorem dvds2add 11375
Description: If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2add  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  +  N )
) )

Proof of Theorem dvds2add
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 961 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  M  e.  ZZ ) )
2 3simpb 962 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
3 zaddcl 8998 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
43anim2i 337 . . 3  |-  ( ( K  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( K  e.  ZZ  /\  ( M  +  N )  e.  ZZ ) )
543impb 1160 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  ( M  +  N )  e.  ZZ ) )
6 zaddcl 8998 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  y )  e.  ZZ )
76adantl 273 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  +  y )  e.  ZZ )
8 zcn 8963 . . . . . . . 8  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 8963 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
10 zcn 8963 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
11 adddir 7681 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  +  y )  x.  K )  =  ( ( x  x.  K )  +  ( y  x.  K
) ) )
128, 9, 10, 11syl3an 1241 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ  /\  K  e.  ZZ )  ->  (
( x  +  y )  x.  K )  =  ( ( x  x.  K )  +  ( y  x.  K
) ) )
13123comr 1172 . . . . . 6  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  +  y )  x.  K )  =  ( ( x  x.  K )  +  ( y  x.  K
) ) )
14133expb 1165 . . . . 5  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  +  y )  x.  K )  =  ( ( x  x.  K )  +  ( y  x.  K ) ) )
15 oveq12 5737 . . . . 5  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( x  x.  K )  +  ( y  x.  K
) )  =  ( M  +  N ) )
1614, 15sylan9eq 2167 . . . 4  |-  ( ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( ( x  x.  K )  =  M  /\  (
y  x.  K )  =  N ) )  ->  ( ( x  +  y )  x.  K )  =  ( M  +  N ) )
1716ex 114 . . 3  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( x  +  y )  x.  K )  =  ( M  +  N ) ) )
18173ad2antl1 1126 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( x  +  y )  x.  K )  =  ( M  +  N ) ) )
191, 2, 5, 7, 18dvds2lem 11353 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  +  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945    = wceq 1314    e. wcel 1463   class class class wbr 3895  (class class class)co 5728   CCcc 7545    + caddc 7550    x. cmul 7552   ZZcz 8958    || cdvds 11341
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-n0 8882  df-z 8959  df-dvds 11342
This theorem is referenced by:  dvdssub2  11383  dvdsadd2b  11388  bezoutlemstep  11531  bezoutlembi  11539  dvdsmulgcd  11559  bezoutr  11566
  Copyright terms: Public domain W3C validator