| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdstr | Unicode version | ||
| Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdstr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 996 |
. 2
| |
| 2 | 3simpc 998 |
. 2
| |
| 3 | 3simpb 997 |
. 2
| |
| 4 | zmulcl 9396 |
. . 3
| |
| 5 | 4 | adantl 277 |
. 2
|
| 6 | oveq2 5933 |
. . . . 5
| |
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | eqeq2 2206 |
. . . . 5
| |
| 9 | 8 | adantl 277 |
. . . 4
|
| 10 | 7, 9 | mpbid 147 |
. . 3
|
| 11 | zcn 9348 |
. . . . . . . 8
| |
| 12 | zcn 9348 |
. . . . . . . 8
| |
| 13 | zcn 9348 |
. . . . . . . 8
| |
| 14 | mulass 8027 |
. . . . . . . . 9
| |
| 15 | mul12 8172 |
. . . . . . . . 9
| |
| 16 | 14, 15 | eqtrd 2229 |
. . . . . . . 8
|
| 17 | 11, 12, 13, 16 | syl3an 1291 |
. . . . . . 7
|
| 18 | 17 | 3comr 1213 |
. . . . . 6
|
| 19 | 18 | 3expb 1206 |
. . . . 5
|
| 20 | 19 | 3ad2antl1 1161 |
. . . 4
|
| 21 | 20 | eqeq1d 2205 |
. . 3
|
| 22 | 10, 21 | imbitrrid 156 |
. 2
|
| 23 | 1, 2, 3, 5, 22 | dvds2lem 11985 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-dvds 11970 |
| This theorem is referenced by: dvdstrd 12012 dvdsmultr1 12013 dvdsmultr2 12015 4dvdseven 12099 dvdsgcdb 12205 dvdsmulgcd 12217 gcddvdslcm 12266 lcmgcdeq 12276 lcmdvdsb 12277 mulgcddvds 12287 rpmulgcd2 12288 rpdvds 12292 exprmfct 12331 rpexp 12346 phimullem 12418 pcpremul 12487 pcdvdsb 12514 pcprmpw2 12527 mpodvdsmulf1o 15310 lgsquad2lem1 15406 |
| Copyright terms: Public domain | W3C validator |