| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdstr | Unicode version | ||
| Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdstr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 997 |
. 2
| |
| 2 | 3simpc 999 |
. 2
| |
| 3 | 3simpb 998 |
. 2
| |
| 4 | zmulcl 9461 |
. . 3
| |
| 5 | 4 | adantl 277 |
. 2
|
| 6 | oveq2 5975 |
. . . . 5
| |
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | eqeq2 2217 |
. . . . 5
| |
| 9 | 8 | adantl 277 |
. . . 4
|
| 10 | 7, 9 | mpbid 147 |
. . 3
|
| 11 | zcn 9412 |
. . . . . . . 8
| |
| 12 | zcn 9412 |
. . . . . . . 8
| |
| 13 | zcn 9412 |
. . . . . . . 8
| |
| 14 | mulass 8091 |
. . . . . . . . 9
| |
| 15 | mul12 8236 |
. . . . . . . . 9
| |
| 16 | 14, 15 | eqtrd 2240 |
. . . . . . . 8
|
| 17 | 11, 12, 13, 16 | syl3an 1292 |
. . . . . . 7
|
| 18 | 17 | 3comr 1214 |
. . . . . 6
|
| 19 | 18 | 3expb 1207 |
. . . . 5
|
| 20 | 19 | 3ad2antl1 1162 |
. . . 4
|
| 21 | 20 | eqeq1d 2216 |
. . 3
|
| 22 | 10, 21 | imbitrrid 156 |
. 2
|
| 23 | 1, 2, 3, 5, 22 | dvds2lem 12229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-dvds 12214 |
| This theorem is referenced by: dvdstrd 12256 dvdsmultr1 12257 dvdsmultr2 12259 4dvdseven 12343 dvdsgcdb 12449 dvdsmulgcd 12461 gcddvdslcm 12510 lcmgcdeq 12520 lcmdvdsb 12521 mulgcddvds 12531 rpmulgcd2 12532 rpdvds 12536 exprmfct 12575 rpexp 12590 phimullem 12662 pcpremul 12731 pcdvdsb 12758 pcprmpw2 12771 mpodvdsmulf1o 15577 lgsquad2lem1 15673 |
| Copyright terms: Public domain | W3C validator |