| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdstr | Unicode version | ||
| Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdstr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1018 |
. 2
| |
| 2 | 3simpc 1020 |
. 2
| |
| 3 | 3simpb 1019 |
. 2
| |
| 4 | zmulcl 9500 |
. . 3
| |
| 5 | 4 | adantl 277 |
. 2
|
| 6 | oveq2 6009 |
. . . . 5
| |
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | eqeq2 2239 |
. . . . 5
| |
| 9 | 8 | adantl 277 |
. . . 4
|
| 10 | 7, 9 | mpbid 147 |
. . 3
|
| 11 | zcn 9451 |
. . . . . . . 8
| |
| 12 | zcn 9451 |
. . . . . . . 8
| |
| 13 | zcn 9451 |
. . . . . . . 8
| |
| 14 | mulass 8130 |
. . . . . . . . 9
| |
| 15 | mul12 8275 |
. . . . . . . . 9
| |
| 16 | 14, 15 | eqtrd 2262 |
. . . . . . . 8
|
| 17 | 11, 12, 13, 16 | syl3an 1313 |
. . . . . . 7
|
| 18 | 17 | 3comr 1235 |
. . . . . 6
|
| 19 | 18 | 3expb 1228 |
. . . . 5
|
| 20 | 19 | 3ad2antl1 1183 |
. . . 4
|
| 21 | 20 | eqeq1d 2238 |
. . 3
|
| 22 | 10, 21 | imbitrrid 156 |
. 2
|
| 23 | 1, 2, 3, 5, 22 | dvds2lem 12314 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-dvds 12299 |
| This theorem is referenced by: dvdstrd 12341 dvdsmultr1 12342 dvdsmultr2 12344 4dvdseven 12428 dvdsgcdb 12534 dvdsmulgcd 12546 gcddvdslcm 12595 lcmgcdeq 12605 lcmdvdsb 12606 mulgcddvds 12616 rpmulgcd2 12617 rpdvds 12621 exprmfct 12660 rpexp 12675 phimullem 12747 pcpremul 12816 pcdvdsb 12843 pcprmpw2 12856 mpodvdsmulf1o 15664 lgsquad2lem1 15760 |
| Copyright terms: Public domain | W3C validator |