| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdstr | Unicode version | ||
| Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdstr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 997 |
. 2
| |
| 2 | 3simpc 999 |
. 2
| |
| 3 | 3simpb 998 |
. 2
| |
| 4 | zmulcl 9426 |
. . 3
| |
| 5 | 4 | adantl 277 |
. 2
|
| 6 | oveq2 5952 |
. . . . 5
| |
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | eqeq2 2215 |
. . . . 5
| |
| 9 | 8 | adantl 277 |
. . . 4
|
| 10 | 7, 9 | mpbid 147 |
. . 3
|
| 11 | zcn 9377 |
. . . . . . . 8
| |
| 12 | zcn 9377 |
. . . . . . . 8
| |
| 13 | zcn 9377 |
. . . . . . . 8
| |
| 14 | mulass 8056 |
. . . . . . . . 9
| |
| 15 | mul12 8201 |
. . . . . . . . 9
| |
| 16 | 14, 15 | eqtrd 2238 |
. . . . . . . 8
|
| 17 | 11, 12, 13, 16 | syl3an 1292 |
. . . . . . 7
|
| 18 | 17 | 3comr 1214 |
. . . . . 6
|
| 19 | 18 | 3expb 1207 |
. . . . 5
|
| 20 | 19 | 3ad2antl1 1162 |
. . . 4
|
| 21 | 20 | eqeq1d 2214 |
. . 3
|
| 22 | 10, 21 | imbitrrid 156 |
. 2
|
| 23 | 1, 2, 3, 5, 22 | dvds2lem 12114 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-dvds 12099 |
| This theorem is referenced by: dvdstrd 12141 dvdsmultr1 12142 dvdsmultr2 12144 4dvdseven 12228 dvdsgcdb 12334 dvdsmulgcd 12346 gcddvdslcm 12395 lcmgcdeq 12405 lcmdvdsb 12406 mulgcddvds 12416 rpmulgcd2 12417 rpdvds 12421 exprmfct 12460 rpexp 12475 phimullem 12547 pcpremul 12616 pcdvdsb 12643 pcprmpw2 12656 mpodvdsmulf1o 15462 lgsquad2lem1 15558 |
| Copyright terms: Public domain | W3C validator |