| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdstr | Unicode version | ||
| Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdstr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 997 |
. 2
| |
| 2 | 3simpc 999 |
. 2
| |
| 3 | 3simpb 998 |
. 2
| |
| 4 | zmulcl 9428 |
. . 3
| |
| 5 | 4 | adantl 277 |
. 2
|
| 6 | oveq2 5954 |
. . . . 5
| |
| 7 | 6 | adantr 276 |
. . . 4
|
| 8 | eqeq2 2215 |
. . . . 5
| |
| 9 | 8 | adantl 277 |
. . . 4
|
| 10 | 7, 9 | mpbid 147 |
. . 3
|
| 11 | zcn 9379 |
. . . . . . . 8
| |
| 12 | zcn 9379 |
. . . . . . . 8
| |
| 13 | zcn 9379 |
. . . . . . . 8
| |
| 14 | mulass 8058 |
. . . . . . . . 9
| |
| 15 | mul12 8203 |
. . . . . . . . 9
| |
| 16 | 14, 15 | eqtrd 2238 |
. . . . . . . 8
|
| 17 | 11, 12, 13, 16 | syl3an 1292 |
. . . . . . 7
|
| 18 | 17 | 3comr 1214 |
. . . . . 6
|
| 19 | 18 | 3expb 1207 |
. . . . 5
|
| 20 | 19 | 3ad2antl1 1162 |
. . . 4
|
| 21 | 20 | eqeq1d 2214 |
. . 3
|
| 22 | 10, 21 | imbitrrid 156 |
. 2
|
| 23 | 1, 2, 3, 5, 22 | dvds2lem 12147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-dvds 12132 |
| This theorem is referenced by: dvdstrd 12174 dvdsmultr1 12175 dvdsmultr2 12177 4dvdseven 12261 dvdsgcdb 12367 dvdsmulgcd 12379 gcddvdslcm 12428 lcmgcdeq 12438 lcmdvdsb 12439 mulgcddvds 12449 rpmulgcd2 12450 rpdvds 12454 exprmfct 12493 rpexp 12508 phimullem 12580 pcpremul 12649 pcdvdsb 12676 pcprmpw2 12689 mpodvdsmulf1o 15495 lgsquad2lem1 15591 |
| Copyright terms: Public domain | W3C validator |