ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdstr Unicode version

Theorem dvdstr 12172
Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdstr  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  M  ||  N )  ->  K  ||  N
) )

Proof of Theorem dvdstr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 997 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  M  e.  ZZ ) )
2 3simpc 999 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
3 3simpb 998 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
4 zmulcl 9428 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
54adantl 277 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  x.  y )  e.  ZZ )
6 oveq2 5954 . . . . 5  |-  ( ( x  x.  K )  =  M  ->  (
y  x.  ( x  x.  K ) )  =  ( y  x.  M ) )
76adantr 276 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( y  x.  ( x  x.  K
) )  =  ( y  x.  M ) )
8 eqeq2 2215 . . . . 5  |-  ( ( y  x.  M )  =  N  ->  (
( y  x.  (
x  x.  K ) )  =  ( y  x.  M )  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
98adantl 277 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( ( y  x.  ( x  x.  K ) )  =  ( y  x.  M
)  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
107, 9mpbid 147 . . 3  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( y  x.  ( x  x.  K
) )  =  N )
11 zcn 9379 . . . . . . . 8  |-  ( x  e.  ZZ  ->  x  e.  CC )
12 zcn 9379 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
13 zcn 9379 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
14 mulass 8058 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  y
)  x.  K )  =  ( x  x.  ( y  x.  K
) ) )
15 mul12 8203 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
x  x.  ( y  x.  K ) )  =  ( y  x.  ( x  x.  K
) ) )
1614, 15eqtrd 2238 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
1711, 12, 13, 16syl3an 1292 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ  /\  K  e.  ZZ )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
18173comr 1214 . . . . . 6  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
19183expb 1207 . . . . 5  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  y )  x.  K )  =  ( y  x.  (
x  x.  K ) ) )
20193ad2antl1 1162 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  y )  x.  K )  =  ( y  x.  (
x  x.  K ) ) )
2120eqeq1d 2214 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  y
)  x.  K )  =  N  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
2210, 21imbitrrid 156 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( ( x  x.  y )  x.  K )  =  N ) )
231, 2, 3, 5, 22dvds2lem 12147 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  M  ||  N )  ->  K  ||  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   class class class wbr 4045  (class class class)co 5946   CCcc 7925    x. cmul 7932   ZZcz 9374    || cdvds 12131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-dvds 12132
This theorem is referenced by:  dvdstrd  12174  dvdsmultr1  12175  dvdsmultr2  12177  4dvdseven  12261  dvdsgcdb  12367  dvdsmulgcd  12379  gcddvdslcm  12428  lcmgcdeq  12438  lcmdvdsb  12439  mulgcddvds  12449  rpmulgcd2  12450  rpdvds  12454  exprmfct  12493  rpexp  12508  phimullem  12580  pcpremul  12649  pcdvdsb  12676  pcprmpw2  12689  mpodvdsmulf1o  15495  lgsquad2lem1  15591
  Copyright terms: Public domain W3C validator