ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdstr Unicode version

Theorem dvdstr 11819
Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdstr  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  M  ||  N )  ->  K  ||  N
) )

Proof of Theorem dvdstr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 994 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  M  e.  ZZ ) )
2 3simpc 996 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
3 3simpb 995 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
4 zmulcl 9295 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
54adantl 277 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  x.  y )  e.  ZZ )
6 oveq2 5877 . . . . 5  |-  ( ( x  x.  K )  =  M  ->  (
y  x.  ( x  x.  K ) )  =  ( y  x.  M ) )
76adantr 276 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( y  x.  ( x  x.  K
) )  =  ( y  x.  M ) )
8 eqeq2 2187 . . . . 5  |-  ( ( y  x.  M )  =  N  ->  (
( y  x.  (
x  x.  K ) )  =  ( y  x.  M )  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
98adantl 277 . . . 4  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( ( y  x.  ( x  x.  K ) )  =  ( y  x.  M
)  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
107, 9mpbid 147 . . 3  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( y  x.  ( x  x.  K
) )  =  N )
11 zcn 9247 . . . . . . . 8  |-  ( x  e.  ZZ  ->  x  e.  CC )
12 zcn 9247 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
13 zcn 9247 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
14 mulass 7933 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  y
)  x.  K )  =  ( x  x.  ( y  x.  K
) ) )
15 mul12 8076 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
x  x.  ( y  x.  K ) )  =  ( y  x.  ( x  x.  K
) ) )
1614, 15eqtrd 2210 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
1711, 12, 13, 16syl3an 1280 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ  /\  K  e.  ZZ )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
18173comr 1211 . . . . . 6  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  x.  y
)  x.  K )  =  ( y  x.  ( x  x.  K
) ) )
19183expb 1204 . . . . 5  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  y )  x.  K )  =  ( y  x.  (
x  x.  K ) ) )
20193ad2antl1 1159 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  x.  y )  x.  K )  =  ( y  x.  (
x  x.  K ) ) )
2120eqeq1d 2186 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  y
)  x.  K )  =  N  <->  ( y  x.  ( x  x.  K
) )  =  N ) )
2210, 21syl5ibr 156 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  M
)  =  N )  ->  ( ( x  x.  y )  x.  K )  =  N ) )
231, 2, 3, 5, 22dvds2lem 11794 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  M  ||  N )  ->  K  ||  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4000  (class class class)co 5869   CCcc 7800    x. cmul 7807   ZZcz 9242    || cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-dvds 11779
This theorem is referenced by:  dvdstrd  11821  dvdsmultr1  11822  dvdsmultr2  11824  4dvdseven  11905  dvdsgcdb  11997  dvdsmulgcd  12009  gcddvdslcm  12056  lcmgcdeq  12066  lcmdvdsb  12067  mulgcddvds  12077  rpmulgcd2  12078  rpdvds  12082  exprmfct  12121  rpexp  12136  phimullem  12208  pcpremul  12276  pcdvdsb  12302  pcprmpw2  12315
  Copyright terms: Public domain W3C validator