| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mndissubm | Unicode version | ||
| Description: If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| mndissubm.b |
|
| mndissubm.s |
|
| mndissubm.z |
|
| Ref | Expression |
|---|---|
| mndissubm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1006 |
. . 3
| |
| 2 | simpr2 1007 |
. . 3
| |
| 3 | mndmgm 13287 |
. . . . . . 7
| |
| 4 | mndmgm 13287 |
. . . . . . 7
| |
| 5 | 3, 4 | anim12i 338 |
. . . . . 6
|
| 6 | 5 | ad2antrr 488 |
. . . . 5
|
| 7 | 3simpb 998 |
. . . . . 6
| |
| 8 | 7 | ad2antlr 489 |
. . . . 5
|
| 9 | simpr 110 |
. . . . 5
| |
| 10 | mndissubm.b |
. . . . . 6
| |
| 11 | mndissubm.s |
. . . . . 6
| |
| 12 | 10, 11 | mgmsscl 13226 |
. . . . 5
|
| 13 | 6, 8, 9, 12 | syl3anc 1250 |
. . . 4
|
| 14 | 13 | ralrimivva 2588 |
. . 3
|
| 15 | mndissubm.z |
. . . . 5
| |
| 16 | eqid 2205 |
. . . . 5
| |
| 17 | 10, 15, 16 | issubm 13337 |
. . . 4
|
| 18 | 17 | ad2antrr 488 |
. . 3
|
| 19 | 1, 2, 14, 18 | mpbir3and 1183 |
. 2
|
| 20 | 19 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 df-ov 5949 df-inn 9039 df-2 9097 df-ndx 12868 df-slot 12869 df-base 12871 df-plusg 12955 df-mgm 13221 df-sgrp 13267 df-mnd 13282 df-submnd 13325 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |