ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndissubm Unicode version

Theorem mndissubm 12871
Description: If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
mndissubm.b  |-  B  =  ( Base `  G
)
mndissubm.s  |-  S  =  ( Base `  H
)
mndissubm.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
mndissubm  |-  ( ( G  e.  Mnd  /\  H  e.  Mnd )  ->  ( ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) )  ->  S  e.  (SubMnd `  G
) ) )

Proof of Theorem mndissubm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1003 . . 3  |-  ( ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) )  ->  S  C_  B )
2 simpr2 1004 . . 3  |-  ( ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) )  ->  .0.  e.  S )
3 mndmgm 12828 . . . . . . 7  |-  ( G  e.  Mnd  ->  G  e. Mgm )
4 mndmgm 12828 . . . . . . 7  |-  ( H  e.  Mnd  ->  H  e. Mgm )
53, 4anim12i 338 . . . . . 6  |-  ( ( G  e.  Mnd  /\  H  e.  Mnd )  ->  ( G  e. Mgm  /\  H  e. Mgm ) )
65ad2antrr 488 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( G  e. Mgm  /\  H  e. Mgm ) )
7 3simpb 995 . . . . . 6  |-  ( ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) )  ->  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )
87ad2antlr 489 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )
9 simpr 110 . . . . 5  |-  ( ( ( ( G  e. 
Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  e.  S  /\  b  e.  S
) )
10 mndissubm.b . . . . . 6  |-  B  =  ( Base `  G
)
11 mndissubm.s . . . . . 6  |-  S  =  ( Base `  H
)
1210, 11mgmsscl 12785 . . . . 5  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a ( +g  `  G ) b )  e.  S )
136, 8, 9, 12syl3anc 1238 . . . 4  |-  ( ( ( ( G  e. 
Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a ( +g  `  G ) b )  e.  S )
1413ralrimivva 2559 . . 3  |-  ( ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) )  ->  A. a  e.  S  A. b  e.  S  ( a
( +g  `  G ) b )  e.  S
)
15 mndissubm.z . . . . 5  |-  .0.  =  ( 0g `  G )
16 eqid 2177 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
1710, 15, 16issubm 12868 . . . 4  |-  ( G  e.  Mnd  ->  ( S  e.  (SubMnd `  G
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. a  e.  S  A. b  e.  S  ( a ( +g  `  G ) b )  e.  S ) ) )
1817ad2antrr 488 . . 3  |-  ( ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) )  ->  ( S  e.  (SubMnd `  G
)  <->  ( S  C_  B  /\  .0.  e.  S  /\  A. a  e.  S  A. b  e.  S  ( a ( +g  `  G ) b )  e.  S ) ) )
191, 2, 14, 18mpbir3and 1180 . 2  |-  ( ( ( G  e.  Mnd  /\  H  e.  Mnd )  /\  ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) ) )  ->  S  e.  (SubMnd `  G )
)
2019ex 115 1  |-  ( ( G  e.  Mnd  /\  H  e.  Mnd )  ->  ( ( S  C_  B  /\  .0.  e.  S  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) )  ->  S  e.  (SubMnd `  G
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131    X. cxp 4626    |` cres 4630   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   0gc0g 12710  Mgmcmgm 12778   Mndcmnd 12822  SubMndcsubmnd 12855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-submnd 12857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator