ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2sub Unicode version

Theorem dvds2sub 12332
Description: If an integer divides each of two other integers, it divides their difference. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2sub  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  -  N )
) )

Proof of Theorem dvds2sub
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 1018 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  M  e.  ZZ ) )
2 3simpb 1019 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
3 zsubcl 9483 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N
)  e.  ZZ )
43anim2i 342 . . 3  |-  ( ( K  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( K  e.  ZZ  /\  ( M  -  N )  e.  ZZ ) )
543impb 1223 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  ( M  -  N )  e.  ZZ ) )
6 zsubcl 9483 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  -  y
)  e.  ZZ )
76adantl 277 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  -  y )  e.  ZZ )
8 zcn 9447 . . . . . . . 8  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 9447 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
10 zcn 9447 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
11 subdir 8528 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  -  y
)  x.  K )  =  ( ( x  x.  K )  -  ( y  x.  K
) ) )
128, 9, 10, 11syl3an 1313 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ  /\  K  e.  ZZ )  ->  (
( x  -  y
)  x.  K )  =  ( ( x  x.  K )  -  ( y  x.  K
) ) )
13123comr 1235 . . . . . 6  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  -  y
)  x.  K )  =  ( ( x  x.  K )  -  ( y  x.  K
) ) )
14133expb 1228 . . . . 5  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  -  y )  x.  K )  =  ( ( x  x.  K )  -  (
y  x.  K ) ) )
15 oveq12 6009 . . . . 5  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( x  x.  K )  -  ( y  x.  K
) )  =  ( M  -  N ) )
1614, 15sylan9eq 2282 . . . 4  |-  ( ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( ( x  x.  K )  =  M  /\  (
y  x.  K )  =  N ) )  ->  ( ( x  -  y )  x.  K )  =  ( M  -  N ) )
1716ex 115 . . 3  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( x  -  y )  x.  K )  =  ( M  -  N ) ) )
18173ad2antl1 1183 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( x  -  y )  x.  K )  =  ( M  -  N ) ) )
191, 2, 5, 7, 18dvds2lem 12309 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  -  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   CCcc 7993    x. cmul 8000    - cmin 8313   ZZcz 9442    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-dvds 12294
This theorem is referenced by:  dvds2subd  12333  dvdssub2  12341  difsqpwdvds  12856
  Copyright terms: Public domain W3C validator