ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2sub Unicode version

Theorem dvds2sub 11105
Description: If an integer divides each of two other integers, it divides their difference. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2sub  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  -  N )
) )

Proof of Theorem dvds2sub
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 940 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  M  e.  ZZ ) )
2 3simpb 941 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  N  e.  ZZ ) )
3 zsubcl 8789 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N
)  e.  ZZ )
43anim2i 334 . . 3  |-  ( ( K  e.  ZZ  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) )  ->  ( K  e.  ZZ  /\  ( M  -  N )  e.  ZZ ) )
543impb 1139 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ZZ  /\  ( M  -  N )  e.  ZZ ) )
6 zsubcl 8789 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  -  y
)  e.  ZZ )
76adantl 271 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( x  -  y )  e.  ZZ )
8 zcn 8753 . . . . . . . 8  |-  ( x  e.  ZZ  ->  x  e.  CC )
9 zcn 8753 . . . . . . . 8  |-  ( y  e.  ZZ  ->  y  e.  CC )
10 zcn 8753 . . . . . . . 8  |-  ( K  e.  ZZ  ->  K  e.  CC )
11 subdir 7862 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  K  e.  CC )  ->  (
( x  -  y
)  x.  K )  =  ( ( x  x.  K )  -  ( y  x.  K
) ) )
128, 9, 10, 11syl3an 1216 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ  /\  K  e.  ZZ )  ->  (
( x  -  y
)  x.  K )  =  ( ( x  x.  K )  -  ( y  x.  K
) ) )
13123comr 1151 . . . . . 6  |-  ( ( K  e.  ZZ  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  -  y
)  x.  K )  =  ( ( x  x.  K )  -  ( y  x.  K
) ) )
14133expb 1144 . . . . 5  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
x  -  y )  x.  K )  =  ( ( x  x.  K )  -  (
y  x.  K ) ) )
15 oveq12 5661 . . . . 5  |-  ( ( ( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( x  x.  K )  -  ( y  x.  K
) )  =  ( M  -  N ) )
1614, 15sylan9eq 2140 . . . 4  |-  ( ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  ( ( x  x.  K )  =  M  /\  (
y  x.  K )  =  N ) )  ->  ( ( x  -  y )  x.  K )  =  ( M  -  N ) )
1716ex 113 . . 3  |-  ( ( K  e.  ZZ  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( x  -  y )  x.  K )  =  ( M  -  N ) ) )
18173ad2antl1 1105 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( (
( x  x.  K
)  =  M  /\  ( y  x.  K
)  =  N )  ->  ( ( x  -  y )  x.  K )  =  ( M  -  N ) ) )
191, 2, 5, 7, 18dvds2lem 11082 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  -  N )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 924    = wceq 1289    e. wcel 1438   class class class wbr 3845  (class class class)co 5652   CCcc 7346    x. cmul 7353    - cmin 7651   ZZcz 8748    || cdvds 11070
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7434  ax-resscn 7435  ax-1cn 7436  ax-1re 7437  ax-icn 7438  ax-addcl 7439  ax-addrcl 7440  ax-mulcl 7441  ax-addcom 7443  ax-mulcom 7444  ax-addass 7445  ax-distr 7447  ax-i2m1 7448  ax-0lt1 7449  ax-0id 7451  ax-rnegex 7452  ax-cnre 7454  ax-pre-ltirr 7455  ax-pre-ltwlin 7456  ax-pre-lttrn 7457  ax-pre-ltadd 7459
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7522  df-mnf 7523  df-xr 7524  df-ltxr 7525  df-le 7526  df-sub 7653  df-neg 7654  df-inn 8421  df-n0 8672  df-z 8749  df-dvds 11071
This theorem is referenced by:  dvds2subd  11106  dvdssub2  11112
  Copyright terms: Public domain W3C validator