ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzofzp1 Unicode version

Theorem fzofzp1 10257
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
fzofzp1  |-  ( C  e.  ( A..^ B
)  ->  ( C  +  1 )  e.  ( A ... B
) )

Proof of Theorem fzofzp1
StepHypRef Expression
1 elfzoel1 10175 . . . 4  |-  ( C  e.  ( A..^ B
)  ->  A  e.  ZZ )
2 uzid 9572 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  ( ZZ>= `  A )
)
3 peano2uz 9613 . . . 4  |-  ( A  e.  ( ZZ>= `  A
)  ->  ( A  +  1 )  e.  ( ZZ>= `  A )
)
4 fzoss1 10201 . . . 4  |-  ( ( A  +  1 )  e.  ( ZZ>= `  A
)  ->  ( ( A  +  1 )..^ ( B  +  1 ) )  C_  ( A..^ ( B  +  1 ) ) )
51, 2, 3, 44syl 18 . . 3  |-  ( C  e.  ( A..^ B
)  ->  ( ( A  +  1 )..^ ( B  +  1 ) )  C_  ( A..^ ( B  +  1 ) ) )
6 1z 9309 . . . 4  |-  1  e.  ZZ
7 fzoaddel 10222 . . . 4  |-  ( ( C  e.  ( A..^ B )  /\  1  e.  ZZ )  ->  ( C  +  1 )  e.  ( ( A  +  1 )..^ ( B  +  1 ) ) )
86, 7mpan2 425 . . 3  |-  ( C  e.  ( A..^ B
)  ->  ( C  +  1 )  e.  ( ( A  + 
1 )..^ ( B  +  1 ) ) )
95, 8sseldd 3171 . 2  |-  ( C  e.  ( A..^ B
)  ->  ( C  +  1 )  e.  ( A..^ ( B  +  1 ) ) )
10 elfzoel2 10176 . . 3  |-  ( C  e.  ( A..^ B
)  ->  B  e.  ZZ )
11 fzval3 10234 . . 3  |-  ( B  e.  ZZ  ->  ( A ... B )  =  ( A..^ ( B  +  1 ) ) )
1210, 11syl 14 . 2  |-  ( C  e.  ( A..^ B
)  ->  ( A ... B )  =  ( A..^ ( B  + 
1 ) ) )
139, 12eleqtrrd 2269 1  |-  ( C  e.  ( A..^ B
)  ->  ( C  +  1 )  e.  ( A ... B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160    C_ wss 3144   ` cfv 5235  (class class class)co 5896   1c1 7842    + caddc 7844   ZZcz 9283   ZZ>=cuz 9558   ...cfz 10038  ..^cfzo 10172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-inn 8950  df-n0 9207  df-z 9284  df-uz 9559  df-fz 10039  df-fzo 10173
This theorem is referenced by:  fzofzp1b  10258  exfzdc  10270  seq3clss  10498  seq3caopr3  10512  seq3caopr2  10513  seq3f1olemp  10533  seq3id3  10538  ser3ge0  10548  telfsumo  11506  telfsumo2  11507  fsumparts  11510  prodfap0  11585  prodfrecap  11586  eulerthlemrprm  12261  eulerthlema  12262
  Copyright terms: Public domain W3C validator