ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzofzp1 Unicode version

Theorem fzofzp1 10033
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
fzofzp1  |-  ( C  e.  ( A..^ B
)  ->  ( C  +  1 )  e.  ( A ... B
) )

Proof of Theorem fzofzp1
StepHypRef Expression
1 elfzoel1 9951 . . . 4  |-  ( C  e.  ( A..^ B
)  ->  A  e.  ZZ )
2 uzid 9362 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  ( ZZ>= `  A )
)
3 peano2uz 9403 . . . 4  |-  ( A  e.  ( ZZ>= `  A
)  ->  ( A  +  1 )  e.  ( ZZ>= `  A )
)
4 fzoss1 9977 . . . 4  |-  ( ( A  +  1 )  e.  ( ZZ>= `  A
)  ->  ( ( A  +  1 )..^ ( B  +  1 ) )  C_  ( A..^ ( B  +  1 ) ) )
51, 2, 3, 44syl 18 . . 3  |-  ( C  e.  ( A..^ B
)  ->  ( ( A  +  1 )..^ ( B  +  1 ) )  C_  ( A..^ ( B  +  1 ) ) )
6 1z 9102 . . . 4  |-  1  e.  ZZ
7 fzoaddel 9998 . . . 4  |-  ( ( C  e.  ( A..^ B )  /\  1  e.  ZZ )  ->  ( C  +  1 )  e.  ( ( A  +  1 )..^ ( B  +  1 ) ) )
86, 7mpan2 422 . . 3  |-  ( C  e.  ( A..^ B
)  ->  ( C  +  1 )  e.  ( ( A  + 
1 )..^ ( B  +  1 ) ) )
95, 8sseldd 3101 . 2  |-  ( C  e.  ( A..^ B
)  ->  ( C  +  1 )  e.  ( A..^ ( B  +  1 ) ) )
10 elfzoel2 9952 . . 3  |-  ( C  e.  ( A..^ B
)  ->  B  e.  ZZ )
11 fzval3 10010 . . 3  |-  ( B  e.  ZZ  ->  ( A ... B )  =  ( A..^ ( B  +  1 ) ) )
1210, 11syl 14 . 2  |-  ( C  e.  ( A..^ B
)  ->  ( A ... B )  =  ( A..^ ( B  + 
1 ) ) )
139, 12eleqtrrd 2220 1  |-  ( C  e.  ( A..^ B
)  ->  ( C  +  1 )  e.  ( A ... B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481    C_ wss 3074   ` cfv 5129  (class class class)co 5780   1c1 7643    + caddc 7645   ZZcz 9076   ZZ>=cuz 9348   ...cfz 9819  ..^cfzo 9948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-cnex 7733  ax-resscn 7734  ax-1cn 7735  ax-1re 7736  ax-icn 7737  ax-addcl 7738  ax-addrcl 7739  ax-mulcl 7740  ax-addcom 7742  ax-addass 7744  ax-distr 7746  ax-i2m1 7747  ax-0lt1 7748  ax-0id 7750  ax-rnegex 7751  ax-cnre 7753  ax-pre-ltirr 7754  ax-pre-ltwlin 7755  ax-pre-lttrn 7756  ax-pre-ltadd 7758
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-iun 3821  df-br 3936  df-opab 3996  df-mpt 3997  df-id 4221  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-iota 5094  df-fun 5131  df-fn 5132  df-f 5133  df-fv 5137  df-riota 5736  df-ov 5783  df-oprab 5784  df-mpo 5785  df-1st 6044  df-2nd 6045  df-pnf 7824  df-mnf 7825  df-xr 7826  df-ltxr 7827  df-le 7828  df-sub 7957  df-neg 7958  df-inn 8743  df-n0 9000  df-z 9077  df-uz 9349  df-fz 9820  df-fzo 9949
This theorem is referenced by:  fzofzp1b  10034  exfzdc  10046  seq3clss  10269  seq3caopr3  10283  seq3caopr2  10284  seq3f1olemp  10304  seq3id3  10309  ser3ge0  10319  telfsumo  11265  telfsumo2  11266  fsumparts  11269  prodfap0  11344  prodfrecap  11345
  Copyright terms: Public domain W3C validator