ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzofzp1 Unicode version

Theorem fzofzp1 10433
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
fzofzp1  |-  ( C  e.  ( A..^ B
)  ->  ( C  +  1 )  e.  ( A ... B
) )

Proof of Theorem fzofzp1
StepHypRef Expression
1 elfzoel1 10341 . . . 4  |-  ( C  e.  ( A..^ B
)  ->  A  e.  ZZ )
2 uzid 9736 . . . 4  |-  ( A  e.  ZZ  ->  A  e.  ( ZZ>= `  A )
)
3 peano2uz 9778 . . . 4  |-  ( A  e.  ( ZZ>= `  A
)  ->  ( A  +  1 )  e.  ( ZZ>= `  A )
)
4 fzoss1 10369 . . . 4  |-  ( ( A  +  1 )  e.  ( ZZ>= `  A
)  ->  ( ( A  +  1 )..^ ( B  +  1 ) )  C_  ( A..^ ( B  +  1 ) ) )
51, 2, 3, 44syl 18 . . 3  |-  ( C  e.  ( A..^ B
)  ->  ( ( A  +  1 )..^ ( B  +  1 ) )  C_  ( A..^ ( B  +  1 ) ) )
6 1z 9472 . . . 4  |-  1  e.  ZZ
7 fzoaddel 10393 . . . 4  |-  ( ( C  e.  ( A..^ B )  /\  1  e.  ZZ )  ->  ( C  +  1 )  e.  ( ( A  +  1 )..^ ( B  +  1 ) ) )
86, 7mpan2 425 . . 3  |-  ( C  e.  ( A..^ B
)  ->  ( C  +  1 )  e.  ( ( A  + 
1 )..^ ( B  +  1 ) ) )
95, 8sseldd 3225 . 2  |-  ( C  e.  ( A..^ B
)  ->  ( C  +  1 )  e.  ( A..^ ( B  +  1 ) ) )
10 elfzoel2 10342 . . 3  |-  ( C  e.  ( A..^ B
)  ->  B  e.  ZZ )
11 fzval3 10410 . . 3  |-  ( B  e.  ZZ  ->  ( A ... B )  =  ( A..^ ( B  +  1 ) ) )
1210, 11syl 14 . 2  |-  ( C  e.  ( A..^ B
)  ->  ( A ... B )  =  ( A..^ ( B  + 
1 ) ) )
139, 12eleqtrrd 2309 1  |-  ( C  e.  ( A..^ B
)  ->  ( C  +  1 )  e.  ( A ... B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    C_ wss 3197   ` cfv 5318  (class class class)co 6001   1c1 8000    + caddc 8002   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204  ..^cfzo 10338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339
This theorem is referenced by:  fzofzp1b  10434  exfzdc  10446  seq3clss  10693  seq3caopr3  10713  seqcaopr3g  10714  seq3caopr2  10715  seqcaopr2g  10716  seq3f1olemp  10737  seqf1oglem2a  10740  seq3id3  10746  seqfeq4g  10753  ser3ge0  10758  swrds1  11200  telfsumo  11977  telfsumo2  11978  fsumparts  11981  prodfap0  12056  prodfrecap  12057  eulerthlemrprm  12751  eulerthlema  12752  gsumfzz  13528  gsumfzfsumlemm  14551  upgriswlkdc  16071  uspgr2wlkeq  16076
  Copyright terms: Public domain W3C validator