| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bcm1k | Unicode version | ||
| Description: The proportion of one
binomial coefficient to another with |
| Ref | Expression |
|---|---|
| bcm1k |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz2 10171 |
. . . . . . . . 9
| |
| 2 | nnuz 9704 |
. . . . . . . . 9
| |
| 3 | 1, 2 | eleqtrrdi 2300 |
. . . . . . . 8
|
| 4 | 3 | nnnn0d 9368 |
. . . . . . 7
|
| 5 | 4 | faccld 10903 |
. . . . . 6
|
| 6 | 5 | nncnd 9070 |
. . . . 5
|
| 7 | fznn0sub 10199 |
. . . . . . . . . 10
| |
| 8 | nn0p1nn 9354 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | syl 14 |
. . . . . . . . 9
|
| 10 | 9 | nnnn0d 9368 |
. . . . . . . 8
|
| 11 | 10 | faccld 10903 |
. . . . . . 7
|
| 12 | elfznn 10196 |
. . . . . . . 8
| |
| 13 | nnm1nn0 9356 |
. . . . . . . 8
| |
| 14 | faccl 10902 |
. . . . . . . 8
| |
| 15 | 12, 13, 14 | 3syl 17 |
. . . . . . 7
|
| 16 | 11, 15 | nnmulcld 9105 |
. . . . . 6
|
| 17 | 16 | nncnd 9070 |
. . . . 5
|
| 18 | 9 | nncnd 9070 |
. . . . 5
|
| 19 | 12 | nncnd 9070 |
. . . . 5
|
| 20 | 16 | nnap0d 9102 |
. . . . 5
|
| 21 | 12 | nnap0d 9102 |
. . . . 5
|
| 22 | 6, 17, 18, 19, 20, 21 | divmuldivapd 8925 |
. . . 4
|
| 23 | elfzel2 10165 |
. . . . . . . . . 10
| |
| 24 | 23 | zcnd 9516 |
. . . . . . . . 9
|
| 25 | 1cnd 8108 |
. . . . . . . . 9
| |
| 26 | 24, 19, 25 | subsubd 8431 |
. . . . . . . 8
|
| 27 | 26 | fveq2d 5593 |
. . . . . . 7
|
| 28 | 27 | oveq1d 5972 |
. . . . . 6
|
| 29 | 28 | oveq2d 5973 |
. . . . 5
|
| 30 | 26 | oveq1d 5972 |
. . . . 5
|
| 31 | 29, 30 | oveq12d 5975 |
. . . 4
|
| 32 | facp1 10897 |
. . . . . . . . 9
| |
| 33 | 7, 32 | syl 14 |
. . . . . . . 8
|
| 34 | 33 | eqcomd 2212 |
. . . . . . 7
|
| 35 | facnn2 10901 |
. . . . . . . 8
| |
| 36 | 12, 35 | syl 14 |
. . . . . . 7
|
| 37 | 34, 36 | oveq12d 5975 |
. . . . . 6
|
| 38 | 7 | faccld 10903 |
. . . . . . . 8
|
| 39 | 38 | nncnd 9070 |
. . . . . . 7
|
| 40 | 12 | nnnn0d 9368 |
. . . . . . . . 9
|
| 41 | 40 | faccld 10903 |
. . . . . . . 8
|
| 42 | 41 | nncnd 9070 |
. . . . . . 7
|
| 43 | 39, 42, 18 | mul32d 8245 |
. . . . . 6
|
| 44 | 11 | nncnd 9070 |
. . . . . . 7
|
| 45 | 15 | nncnd 9070 |
. . . . . . 7
|
| 46 | 44, 45, 19 | mulassd 8116 |
. . . . . 6
|
| 47 | 37, 43, 46 | 3eqtr4d 2249 |
. . . . 5
|
| 48 | 47 | oveq2d 5973 |
. . . 4
|
| 49 | 22, 31, 48 | 3eqtr4d 2249 |
. . 3
|
| 50 | 6, 18 | mulcomd 8114 |
. . . 4
|
| 51 | 38, 41 | nnmulcld 9105 |
. . . . . 6
|
| 52 | 51 | nncnd 9070 |
. . . . 5
|
| 53 | 52, 18 | mulcomd 8114 |
. . . 4
|
| 54 | 50, 53 | oveq12d 5975 |
. . 3
|
| 55 | 51 | nnap0d 9102 |
. . . 4
|
| 56 | 9 | nnap0d 9102 |
. . . 4
|
| 57 | 6, 52, 18, 55, 56 | divcanap5d 8910 |
. . 3
|
| 58 | 49, 54, 57 | 3eqtrrd 2244 |
. 2
|
| 59 | 0p1e1 9170 |
. . . . . 6
| |
| 60 | 59 | oveq1i 5967 |
. . . . 5
|
| 61 | 0z 9403 |
. . . . . 6
| |
| 62 | fzp1ss 10215 |
. . . . . 6
| |
| 63 | 61, 62 | ax-mp 5 |
. . . . 5
|
| 64 | 60, 63 | eqsstrri 3230 |
. . . 4
|
| 65 | 64 | sseli 3193 |
. . 3
|
| 66 | bcval2 10917 |
. . 3
| |
| 67 | 65, 66 | syl 14 |
. 2
|
| 68 | ax-1cn 8038 |
. . . . . . . 8
| |
| 69 | npcan 8301 |
. . . . . . . 8
| |
| 70 | 24, 68, 69 | sylancl 413 |
. . . . . . 7
|
| 71 | peano2zm 9430 |
. . . . . . . 8
| |
| 72 | uzid 9682 |
. . . . . . . 8
| |
| 73 | peano2uz 9724 |
. . . . . . . 8
| |
| 74 | 23, 71, 72, 73 | 4syl 18 |
. . . . . . 7
|
| 75 | 70, 74 | eqeltrrd 2284 |
. . . . . 6
|
| 76 | fzss2 10206 |
. . . . . 6
| |
| 77 | 75, 76 | syl 14 |
. . . . 5
|
| 78 | elfzmlbm 10273 |
. . . . 5
| |
| 79 | 77, 78 | sseldd 3198 |
. . . 4
|
| 80 | bcval2 10917 |
. . . 4
| |
| 81 | 79, 80 | syl 14 |
. . 3
|
| 82 | 81 | oveq1d 5972 |
. 2
|
| 83 | 58, 67, 82 | 3eqtr4d 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-fz 10151 df-seqfrec 10615 df-fac 10893 df-bc 10915 |
| This theorem is referenced by: bcp1nk 10929 bcpasc 10933 |
| Copyright terms: Public domain | W3C validator |