ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcm1k Unicode version

Theorem bcm1k 10739
Description: The proportion of one binomial coefficient to another with  K decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcm1k  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )

Proof of Theorem bcm1k
StepHypRef Expression
1 elfzuz2 10028 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  1 )
)
2 nnuz 9562 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
31, 2eleqtrrdi 2271 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN )
43nnnn0d 9228 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN0 )
54faccld 10715 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  N )  e.  NN )
65nncnd 8932 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  N )  e.  CC )
7 fznn0sub 10056 . . . . . . . . . 10  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  K )  e.  NN0 )
8 nn0p1nn 9214 . . . . . . . . . 10  |-  ( ( N  -  K )  e.  NN0  ->  ( ( N  -  K )  +  1 )  e.  NN )
97, 8syl 14 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN )
109nnnn0d 9228 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN0 )
1110faccld 10715 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  e.  NN )
12 elfznn 10053 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN )
13 nnm1nn0 9216 . . . . . . . 8  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
14 faccl 10714 . . . . . . . 8  |-  ( ( K  -  1 )  e.  NN0  ->  ( ! `
 ( K  - 
1 ) )  e.  NN )
1512, 13, 143syl 17 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( K  -  1 ) )  e.  NN )
1611, 15nnmulcld 8967 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN )
1716nncnd 8932 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  CC )
189nncnd 8932 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  CC )
1912nncnd 8932 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  K  e.  CC )
2016nnap0d 8964 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) ) #  0 )
2112nnap0d 8964 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  K #  0 )
226, 17, 18, 19, 20, 21divmuldivapd 8788 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( ( N  -  K
)  +  1 )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
23 elfzel2 10022 . . . . . . . . . 10  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ZZ )
2423zcnd 9375 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  N  e.  CC )
25 1cnd 7972 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  1  e.  CC )
2624, 19, 25subsubd 8295 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  ( K  -  1 ) )  =  ( ( N  -  K )  +  1 ) )
2726fveq2d 5519 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  ( K  - 
1 ) ) )  =  ( ! `  ( ( N  -  K )  +  1 ) ) )
2827oveq1d 5889 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) )
2928oveq2d 5890 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  ( K  - 
1 ) ) )  x.  ( ! `  ( K  -  1
) ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) ) )
3026oveq1d 5889 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  ( K  -  1 ) )  /  K )  =  ( ( ( N  -  K )  +  1 )  /  K ) )
3129, 30oveq12d 5892 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( ( N  -  K )  +  1 )  /  K
) ) )
32 facp1 10709 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( ( N  -  K )  +  1 ) )  =  ( ( ! `  ( N  -  K
) )  x.  (
( N  -  K
)  +  1 ) ) )
337, 32syl 14 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  =  ( ( ! `
 ( N  -  K ) )  x.  ( ( N  -  K )  +  1 ) ) )
3433eqcomd 2183 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ! `  ( ( N  -  K )  +  1 ) ) )
35 facnn2 10713 . . . . . . . 8  |-  ( K  e.  NN  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
3612, 35syl 14 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
3734, 36oveq12d 5892 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 K ) )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ( ! `  ( K  -  1
) )  x.  K
) ) )
387faccld 10715 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  K ) )  e.  NN )
3938nncnd 8932 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  K ) )  e.  CC )
4012nnnn0d 9228 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN0 )
4140faccld 10715 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  e.  NN )
4241nncnd 8932 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  e.  CC )
4339, 42, 18mul32d 8109 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( ! `  ( N  -  K ) )  x.  ( ( N  -  K )  +  1 ) )  x.  ( ! `  K
) ) )
4411nncnd 8932 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  e.  CC )
4515nncnd 8932 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( K  -  1 ) )  e.  CC )
4644, 45, 19mulassd 7980 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ( ! `  ( K  -  1
) )  x.  K
) ) )
4737, 43, 463eqtr4d 2220 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1
) ) )  x.  K ) )
4847oveq2d 5890 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  x.  (
( N  -  K
)  +  1 ) )  /  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  x.  ( ( N  -  K )  +  1 ) ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
4922, 31, 483eqtr4d 2220 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) )  x.  (
( N  -  K
)  +  1 ) ) ) )
506, 18mulcomd 7978 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( N  -  K )  +  1 )  x.  ( ! `  N
) ) )
5138, 41nnmulcld 8967 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  NN )
5251nncnd 8932 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  CC )
5352, 18mulcomd 7978 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( N  -  K )  +  1 )  x.  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
5450, 53oveq12d 5892 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  x.  (
( N  -  K
)  +  1 ) )  /  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  x.  ( ( N  -  K )  +  1 ) ) )  =  ( ( ( ( N  -  K
)  +  1 )  x.  ( ! `  N ) )  / 
( ( ( N  -  K )  +  1 )  x.  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ) )
5551nnap0d 8964 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) #  0 )
569nnap0d 8964 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 ) #  0 )
576, 52, 18, 55, 56divcanap5d 8773 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ( N  -  K )  +  1 )  x.  ( ! `  N )
)  /  ( ( ( N  -  K
)  +  1 )  x.  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
5849, 54, 573eqtrrd 2215 . 2  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( N  -  ( K  -  1
) ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( N  -  ( K  -  1
) )  /  K
) ) )
59 0p1e1 9032 . . . . . 6  |-  ( 0  +  1 )  =  1
6059oveq1i 5884 . . . . 5  |-  ( ( 0  +  1 ) ... N )  =  ( 1 ... N
)
61 0z 9263 . . . . . 6  |-  0  e.  ZZ
62 fzp1ss 10072 . . . . . 6  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... N ) 
C_  ( 0 ... N ) )
6361, 62ax-mp 5 . . . . 5  |-  ( ( 0  +  1 ) ... N )  C_  ( 0 ... N
)
6460, 63eqsstrri 3188 . . . 4  |-  ( 1 ... N )  C_  ( 0 ... N
)
6564sseli 3151 . . 3  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 0 ... N
) )
66 bcval2 10729 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
6765, 66syl 14 . 2  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
68 ax-1cn 7903 . . . . . . . 8  |-  1  e.  CC
69 npcan 8165 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
7024, 68, 69sylancl 413 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  1 )  +  1 )  =  N )
71 peano2zm 9290 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
72 uzid 9541 . . . . . . . 8  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
73 peano2uz 9582 . . . . . . . 8  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
7423, 71, 72, 734syl 18 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
7570, 74eqeltrrd 2255 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  ( N  -  1 ) ) )
76 fzss2 10063 . . . . . 6  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... N
) )
7775, 76syl 14 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
0 ... ( N  - 
1 ) )  C_  ( 0 ... N
) )
78 elfzmlbm 10130 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... ( N  -  1 ) ) )
7977, 78sseldd 3156 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... N ) )
80 bcval2 10729 . . . 4  |-  ( ( K  -  1 )  e.  ( 0 ... N )  ->  ( N  _C  ( K  - 
1 ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) ) )
8179, 80syl 14 . . 3  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) ) )
8281oveq1d 5889 . 2  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( N  -  ( K  -  1
) ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( N  -  ( K  -  1
) )  /  K
) ) )
8358, 67, 823eqtr4d 2220 1  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148    C_ wss 3129   ` cfv 5216  (class class class)co 5874   CCcc 7808   0cc0 7810   1c1 7811    + caddc 7813    x. cmul 7815    - cmin 8127    / cdiv 8628   NNcn 8918   NN0cn0 9175   ZZcz 9252   ZZ>=cuz 9527   ...cfz 10007   !cfa 10704    _C cbc 10726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-fz 10008  df-seqfrec 10445  df-fac 10705  df-bc 10727
This theorem is referenced by:  bcp1nk  10741  bcpasc  10745
  Copyright terms: Public domain W3C validator