ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcm1k Unicode version

Theorem bcm1k 10673
Description: The proportion of one binomial coefficient to another with  K decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcm1k  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )

Proof of Theorem bcm1k
StepHypRef Expression
1 elfzuz2 9964 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  1 )
)
2 nnuz 9501 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
31, 2eleqtrrdi 2260 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN )
43nnnn0d 9167 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN0 )
54faccld 10649 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  N )  e.  NN )
65nncnd 8871 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  N )  e.  CC )
7 fznn0sub 9992 . . . . . . . . . 10  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  K )  e.  NN0 )
8 nn0p1nn 9153 . . . . . . . . . 10  |-  ( ( N  -  K )  e.  NN0  ->  ( ( N  -  K )  +  1 )  e.  NN )
97, 8syl 14 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN )
109nnnn0d 9167 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN0 )
1110faccld 10649 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  e.  NN )
12 elfznn 9989 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN )
13 nnm1nn0 9155 . . . . . . . 8  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
14 faccl 10648 . . . . . . . 8  |-  ( ( K  -  1 )  e.  NN0  ->  ( ! `
 ( K  - 
1 ) )  e.  NN )
1512, 13, 143syl 17 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( K  -  1 ) )  e.  NN )
1611, 15nnmulcld 8906 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  NN )
1716nncnd 8871 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) )  e.  CC )
189nncnd 8871 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  CC )
1912nncnd 8871 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  K  e.  CC )
2016nnap0d 8903 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) ) #  0 )
2112nnap0d 8903 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  K #  0 )
226, 17, 18, 19, 20, 21divmuldivapd 8728 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( ( N  -  K
)  +  1 )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
23 elfzel2 9958 . . . . . . . . . 10  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ZZ )
2423zcnd 9314 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  N  e.  CC )
25 1cnd 7915 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  1  e.  CC )
2624, 19, 25subsubd 8237 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  ( K  -  1 ) )  =  ( ( N  -  K )  +  1 ) )
2726fveq2d 5490 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  ( K  - 
1 ) ) )  =  ( ! `  ( ( N  -  K )  +  1 ) ) )
2827oveq1d 5857 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) )
2928oveq2d 5858 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  ( K  - 
1 ) ) )  x.  ( ! `  ( K  -  1
) ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) ) )
3026oveq1d 5857 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  ( K  -  1 ) )  /  K )  =  ( ( ( N  -  K )  +  1 )  /  K ) )
3129, 30oveq12d 5860 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( ( N  -  K )  +  1 )  /  K
) ) )
32 facp1 10643 . . . . . . . . 9  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( ( N  -  K )  +  1 ) )  =  ( ( ! `  ( N  -  K
) )  x.  (
( N  -  K
)  +  1 ) ) )
337, 32syl 14 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  =  ( ( ! `
 ( N  -  K ) )  x.  ( ( N  -  K )  +  1 ) ) )
3433eqcomd 2171 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ! `  ( ( N  -  K )  +  1 ) ) )
35 facnn2 10647 . . . . . . . 8  |-  ( K  e.  NN  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
3612, 35syl 14 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  =  ( ( ! `
 ( K  - 
1 ) )  x.  K ) )
3734, 36oveq12d 5860 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  (
( N  -  K
)  +  1 ) )  x.  ( ! `
 K ) )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ( ! `  ( K  -  1
) )  x.  K
) ) )
387faccld 10649 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  K ) )  e.  NN )
3938nncnd 8871 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( N  -  K ) )  e.  CC )
4012nnnn0d 9167 . . . . . . . . 9  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN0 )
4140faccld 10649 . . . . . . . 8  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  e.  NN )
4241nncnd 8871 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  K )  e.  CC )
4339, 42, 18mul32d 8051 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( ! `  ( N  -  K ) )  x.  ( ( N  -  K )  +  1 ) )  x.  ( ! `  K
) ) )
4411nncnd 8871 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( ( N  -  K )  +  1 ) )  e.  CC )
4515nncnd 8871 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  ( ! `  ( K  -  1 ) )  e.  CC )
4644, 45, 19mulassd 7922 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K )  =  ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ( ! `  ( K  -  1
) )  x.  K
) ) )
4737, 43, 463eqtr4d 2208 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( ! `  ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1
) ) )  x.  K ) )
4847oveq2d 5858 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  x.  (
( N  -  K
)  +  1 ) )  /  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  x.  ( ( N  -  K )  +  1 ) ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( ( N  -  K )  +  1 ) )  x.  ( ! `  ( K  -  1 ) ) )  x.  K
) ) )
4922, 31, 483eqtr4d 2208 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  x.  ( ( N  -  K )  +  1 ) )  / 
( ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) )  x.  (
( N  -  K
)  +  1 ) ) ) )
506, 18mulcomd 7920 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( N  -  K )  +  1 )  x.  ( ! `  N
) ) )
5138, 41nnmulcld 8906 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  NN )
5251nncnd 8871 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  e.  CC )
5352, 18mulcomd 7920 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  x.  ( ( N  -  K )  +  1 ) )  =  ( ( ( N  -  K )  +  1 )  x.  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
5450, 53oveq12d 5860 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ! `  N )  x.  (
( N  -  K
)  +  1 ) )  /  ( ( ( ! `  ( N  -  K )
)  x.  ( ! `
 K ) )  x.  ( ( N  -  K )  +  1 ) ) )  =  ( ( ( ( N  -  K
)  +  1 )  x.  ( ! `  N ) )  / 
( ( ( N  -  K )  +  1 )  x.  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) ) )
5551nnap0d 8903 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) #  0 )
569nnap0d 8903 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 ) #  0 )
576, 52, 18, 55, 56divcanap5d 8713 . . 3  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ( N  -  K )  +  1 )  x.  ( ! `  N )
)  /  ( ( ( N  -  K
)  +  1 )  x.  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )  =  ( ( ! `
 N )  / 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) ) )
5849, 54, 573eqtrrd 2203 . 2  |-  ( K  e.  ( 1 ... N )  ->  (
( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( N  -  ( K  -  1
) ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( N  -  ( K  -  1
) )  /  K
) ) )
59 0p1e1 8971 . . . . . 6  |-  ( 0  +  1 )  =  1
6059oveq1i 5852 . . . . 5  |-  ( ( 0  +  1 ) ... N )  =  ( 1 ... N
)
61 0z 9202 . . . . . 6  |-  0  e.  ZZ
62 fzp1ss 10008 . . . . . 6  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... N ) 
C_  ( 0 ... N ) )
6361, 62ax-mp 5 . . . . 5  |-  ( ( 0  +  1 ) ... N )  C_  ( 0 ... N
)
6460, 63eqsstrri 3175 . . . 4  |-  ( 1 ... N )  C_  ( 0 ... N
)
6564sseli 3138 . . 3  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 0 ... N
) )
66 bcval2 10663 . . 3  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
6765, 66syl 14 . 2  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
68 ax-1cn 7846 . . . . . . . 8  |-  1  e.  CC
69 npcan 8107 . . . . . . . 8  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
7024, 68, 69sylancl 410 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  1 )  +  1 )  =  N )
71 peano2zm 9229 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
72 uzid 9480 . . . . . . . 8  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
73 peano2uz 9521 . . . . . . . 8  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
7423, 71, 72, 734syl 18 . . . . . . 7  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
7570, 74eqeltrrd 2244 . . . . . 6  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  ( N  -  1 ) ) )
76 fzss2 9999 . . . . . 6  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... N
) )
7775, 76syl 14 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  (
0 ... ( N  - 
1 ) )  C_  ( 0 ... N
) )
78 elfzmlbm 10066 . . . . 5  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... ( N  -  1 ) ) )
7977, 78sseldd 3143 . . . 4  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... N ) )
80 bcval2 10663 . . . 4  |-  ( ( K  -  1 )  e.  ( 0 ... N )  ->  ( N  _C  ( K  - 
1 ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) ) )
8179, 80syl 14 . . 3  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  ( K  -  1 ) ) )  x.  ( ! `
 ( K  - 
1 ) ) ) ) )
8281oveq1d 5857 . 2  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( ( ! `  N )  /  ( ( ! `
 ( N  -  ( K  -  1
) ) )  x.  ( ! `  ( K  -  1 ) ) ) )  x.  ( ( N  -  ( K  -  1
) )  /  K
) ) )
8358, 67, 823eqtr4d 2208 1  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    C_ wss 3116   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    - cmin 8069    / cdiv 8568   NNcn 8857   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944   !cfa 10638    _C cbc 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-fz 9945  df-seqfrec 10381  df-fac 10639  df-bc 10661
This theorem is referenced by:  bcp1nk  10675  bcpasc  10679
  Copyright terms: Public domain W3C validator