| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bcm1k | Unicode version | ||
| Description: The proportion of one
binomial coefficient to another with |
| Ref | Expression |
|---|---|
| bcm1k |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz2 10221 |
. . . . . . . . 9
| |
| 2 | nnuz 9754 |
. . . . . . . . 9
| |
| 3 | 1, 2 | eleqtrrdi 2323 |
. . . . . . . 8
|
| 4 | 3 | nnnn0d 9418 |
. . . . . . 7
|
| 5 | 4 | faccld 10953 |
. . . . . 6
|
| 6 | 5 | nncnd 9120 |
. . . . 5
|
| 7 | fznn0sub 10249 |
. . . . . . . . . 10
| |
| 8 | nn0p1nn 9404 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | syl 14 |
. . . . . . . . 9
|
| 10 | 9 | nnnn0d 9418 |
. . . . . . . 8
|
| 11 | 10 | faccld 10953 |
. . . . . . 7
|
| 12 | elfznn 10246 |
. . . . . . . 8
| |
| 13 | nnm1nn0 9406 |
. . . . . . . 8
| |
| 14 | faccl 10952 |
. . . . . . . 8
| |
| 15 | 12, 13, 14 | 3syl 17 |
. . . . . . 7
|
| 16 | 11, 15 | nnmulcld 9155 |
. . . . . 6
|
| 17 | 16 | nncnd 9120 |
. . . . 5
|
| 18 | 9 | nncnd 9120 |
. . . . 5
|
| 19 | 12 | nncnd 9120 |
. . . . 5
|
| 20 | 16 | nnap0d 9152 |
. . . . 5
|
| 21 | 12 | nnap0d 9152 |
. . . . 5
|
| 22 | 6, 17, 18, 19, 20, 21 | divmuldivapd 8975 |
. . . 4
|
| 23 | elfzel2 10215 |
. . . . . . . . . 10
| |
| 24 | 23 | zcnd 9566 |
. . . . . . . . 9
|
| 25 | 1cnd 8158 |
. . . . . . . . 9
| |
| 26 | 24, 19, 25 | subsubd 8481 |
. . . . . . . 8
|
| 27 | 26 | fveq2d 5630 |
. . . . . . 7
|
| 28 | 27 | oveq1d 6015 |
. . . . . 6
|
| 29 | 28 | oveq2d 6016 |
. . . . 5
|
| 30 | 26 | oveq1d 6015 |
. . . . 5
|
| 31 | 29, 30 | oveq12d 6018 |
. . . 4
|
| 32 | facp1 10947 |
. . . . . . . . 9
| |
| 33 | 7, 32 | syl 14 |
. . . . . . . 8
|
| 34 | 33 | eqcomd 2235 |
. . . . . . 7
|
| 35 | facnn2 10951 |
. . . . . . . 8
| |
| 36 | 12, 35 | syl 14 |
. . . . . . 7
|
| 37 | 34, 36 | oveq12d 6018 |
. . . . . 6
|
| 38 | 7 | faccld 10953 |
. . . . . . . 8
|
| 39 | 38 | nncnd 9120 |
. . . . . . 7
|
| 40 | 12 | nnnn0d 9418 |
. . . . . . . . 9
|
| 41 | 40 | faccld 10953 |
. . . . . . . 8
|
| 42 | 41 | nncnd 9120 |
. . . . . . 7
|
| 43 | 39, 42, 18 | mul32d 8295 |
. . . . . 6
|
| 44 | 11 | nncnd 9120 |
. . . . . . 7
|
| 45 | 15 | nncnd 9120 |
. . . . . . 7
|
| 46 | 44, 45, 19 | mulassd 8166 |
. . . . . 6
|
| 47 | 37, 43, 46 | 3eqtr4d 2272 |
. . . . 5
|
| 48 | 47 | oveq2d 6016 |
. . . 4
|
| 49 | 22, 31, 48 | 3eqtr4d 2272 |
. . 3
|
| 50 | 6, 18 | mulcomd 8164 |
. . . 4
|
| 51 | 38, 41 | nnmulcld 9155 |
. . . . . 6
|
| 52 | 51 | nncnd 9120 |
. . . . 5
|
| 53 | 52, 18 | mulcomd 8164 |
. . . 4
|
| 54 | 50, 53 | oveq12d 6018 |
. . 3
|
| 55 | 51 | nnap0d 9152 |
. . . 4
|
| 56 | 9 | nnap0d 9152 |
. . . 4
|
| 57 | 6, 52, 18, 55, 56 | divcanap5d 8960 |
. . 3
|
| 58 | 49, 54, 57 | 3eqtrrd 2267 |
. 2
|
| 59 | 0p1e1 9220 |
. . . . . 6
| |
| 60 | 59 | oveq1i 6010 |
. . . . 5
|
| 61 | 0z 9453 |
. . . . . 6
| |
| 62 | fzp1ss 10265 |
. . . . . 6
| |
| 63 | 61, 62 | ax-mp 5 |
. . . . 5
|
| 64 | 60, 63 | eqsstrri 3257 |
. . . 4
|
| 65 | 64 | sseli 3220 |
. . 3
|
| 66 | bcval2 10967 |
. . 3
| |
| 67 | 65, 66 | syl 14 |
. 2
|
| 68 | ax-1cn 8088 |
. . . . . . . 8
| |
| 69 | npcan 8351 |
. . . . . . . 8
| |
| 70 | 24, 68, 69 | sylancl 413 |
. . . . . . 7
|
| 71 | peano2zm 9480 |
. . . . . . . 8
| |
| 72 | uzid 9732 |
. . . . . . . 8
| |
| 73 | peano2uz 9774 |
. . . . . . . 8
| |
| 74 | 23, 71, 72, 73 | 4syl 18 |
. . . . . . 7
|
| 75 | 70, 74 | eqeltrrd 2307 |
. . . . . 6
|
| 76 | fzss2 10256 |
. . . . . 6
| |
| 77 | 75, 76 | syl 14 |
. . . . 5
|
| 78 | elfzmlbm 10323 |
. . . . 5
| |
| 79 | 77, 78 | sseldd 3225 |
. . . 4
|
| 80 | bcval2 10967 |
. . . 4
| |
| 81 | 79, 80 | syl 14 |
. . 3
|
| 82 | 81 | oveq1d 6015 |
. 2
|
| 83 | 58, 67, 82 | 3eqtr4d 2272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-fz 10201 df-seqfrec 10665 df-fac 10943 df-bc 10965 |
| This theorem is referenced by: bcp1nk 10979 bcpasc 10983 |
| Copyright terms: Public domain | W3C validator |