Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bcm1k | Unicode version |
Description: The proportion of one binomial coefficient to another with decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.) |
Ref | Expression |
---|---|
bcm1k |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz2 9964 | . . . . . . . . 9 | |
2 | nnuz 9501 | . . . . . . . . 9 | |
3 | 1, 2 | eleqtrrdi 2260 | . . . . . . . 8 |
4 | 3 | nnnn0d 9167 | . . . . . . 7 |
5 | 4 | faccld 10649 | . . . . . 6 |
6 | 5 | nncnd 8871 | . . . . 5 |
7 | fznn0sub 9992 | . . . . . . . . . 10 | |
8 | nn0p1nn 9153 | . . . . . . . . . 10 | |
9 | 7, 8 | syl 14 | . . . . . . . . 9 |
10 | 9 | nnnn0d 9167 | . . . . . . . 8 |
11 | 10 | faccld 10649 | . . . . . . 7 |
12 | elfznn 9989 | . . . . . . . 8 | |
13 | nnm1nn0 9155 | . . . . . . . 8 | |
14 | faccl 10648 | . . . . . . . 8 | |
15 | 12, 13, 14 | 3syl 17 | . . . . . . 7 |
16 | 11, 15 | nnmulcld 8906 | . . . . . 6 |
17 | 16 | nncnd 8871 | . . . . 5 |
18 | 9 | nncnd 8871 | . . . . 5 |
19 | 12 | nncnd 8871 | . . . . 5 |
20 | 16 | nnap0d 8903 | . . . . 5 # |
21 | 12 | nnap0d 8903 | . . . . 5 # |
22 | 6, 17, 18, 19, 20, 21 | divmuldivapd 8728 | . . . 4 |
23 | elfzel2 9958 | . . . . . . . . . 10 | |
24 | 23 | zcnd 9314 | . . . . . . . . 9 |
25 | 1cnd 7915 | . . . . . . . . 9 | |
26 | 24, 19, 25 | subsubd 8237 | . . . . . . . 8 |
27 | 26 | fveq2d 5490 | . . . . . . 7 |
28 | 27 | oveq1d 5857 | . . . . . 6 |
29 | 28 | oveq2d 5858 | . . . . 5 |
30 | 26 | oveq1d 5857 | . . . . 5 |
31 | 29, 30 | oveq12d 5860 | . . . 4 |
32 | facp1 10643 | . . . . . . . . 9 | |
33 | 7, 32 | syl 14 | . . . . . . . 8 |
34 | 33 | eqcomd 2171 | . . . . . . 7 |
35 | facnn2 10647 | . . . . . . . 8 | |
36 | 12, 35 | syl 14 | . . . . . . 7 |
37 | 34, 36 | oveq12d 5860 | . . . . . 6 |
38 | 7 | faccld 10649 | . . . . . . . 8 |
39 | 38 | nncnd 8871 | . . . . . . 7 |
40 | 12 | nnnn0d 9167 | . . . . . . . . 9 |
41 | 40 | faccld 10649 | . . . . . . . 8 |
42 | 41 | nncnd 8871 | . . . . . . 7 |
43 | 39, 42, 18 | mul32d 8051 | . . . . . 6 |
44 | 11 | nncnd 8871 | . . . . . . 7 |
45 | 15 | nncnd 8871 | . . . . . . 7 |
46 | 44, 45, 19 | mulassd 7922 | . . . . . 6 |
47 | 37, 43, 46 | 3eqtr4d 2208 | . . . . 5 |
48 | 47 | oveq2d 5858 | . . . 4 |
49 | 22, 31, 48 | 3eqtr4d 2208 | . . 3 |
50 | 6, 18 | mulcomd 7920 | . . . 4 |
51 | 38, 41 | nnmulcld 8906 | . . . . . 6 |
52 | 51 | nncnd 8871 | . . . . 5 |
53 | 52, 18 | mulcomd 7920 | . . . 4 |
54 | 50, 53 | oveq12d 5860 | . . 3 |
55 | 51 | nnap0d 8903 | . . . 4 # |
56 | 9 | nnap0d 8903 | . . . 4 # |
57 | 6, 52, 18, 55, 56 | divcanap5d 8713 | . . 3 |
58 | 49, 54, 57 | 3eqtrrd 2203 | . 2 |
59 | 0p1e1 8971 | . . . . . 6 | |
60 | 59 | oveq1i 5852 | . . . . 5 |
61 | 0z 9202 | . . . . . 6 | |
62 | fzp1ss 10008 | . . . . . 6 | |
63 | 61, 62 | ax-mp 5 | . . . . 5 |
64 | 60, 63 | eqsstrri 3175 | . . . 4 |
65 | 64 | sseli 3138 | . . 3 |
66 | bcval2 10663 | . . 3 | |
67 | 65, 66 | syl 14 | . 2 |
68 | ax-1cn 7846 | . . . . . . . 8 | |
69 | npcan 8107 | . . . . . . . 8 | |
70 | 24, 68, 69 | sylancl 410 | . . . . . . 7 |
71 | peano2zm 9229 | . . . . . . . 8 | |
72 | uzid 9480 | . . . . . . . 8 | |
73 | peano2uz 9521 | . . . . . . . 8 | |
74 | 23, 71, 72, 73 | 4syl 18 | . . . . . . 7 |
75 | 70, 74 | eqeltrrd 2244 | . . . . . 6 |
76 | fzss2 9999 | . . . . . 6 | |
77 | 75, 76 | syl 14 | . . . . 5 |
78 | elfzmlbm 10066 | . . . . 5 | |
79 | 77, 78 | sseldd 3143 | . . . 4 |
80 | bcval2 10663 | . . . 4 | |
81 | 79, 80 | syl 14 | . . 3 |
82 | 81 | oveq1d 5857 | . 2 |
83 | 58, 67, 82 | 3eqtr4d 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 wss 3116 cfv 5188 (class class class)co 5842 cc 7751 cc0 7753 c1 7754 caddc 7756 cmul 7758 cmin 8069 cdiv 8568 cn 8857 cn0 9114 cz 9191 cuz 9466 cfz 9944 cfa 10638 cbc 10660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-fz 9945 df-seqfrec 10381 df-fac 10639 df-bc 10661 |
This theorem is referenced by: bcp1nk 10675 bcpasc 10679 |
Copyright terms: Public domain | W3C validator |