ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashiun Unicode version

Theorem hashiun 11279
Description: The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1  |-  ( ph  ->  A  e.  Fin )
fsumiun.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
fsumiun.3  |-  ( ph  -> Disj  x  e.  A  B
)
Assertion
Ref Expression
hashiun  |-  ( ph  ->  ( `  U_ x  e.  A  B )  = 
sum_ x  e.  A  ( `  B ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem hashiun
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fsumiun.1 . . 3  |-  ( ph  ->  A  e.  Fin )
2 fsumiun.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
3 fsumiun.3 . . 3  |-  ( ph  -> Disj  x  e.  A  B
)
4 1cnd 7806 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  -> 
1  e.  CC )
51, 2, 3, 4fsumiun 11278 . 2  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B
1  =  sum_ x  e.  A  sum_ k  e.  B  1 )
62ralrimiva 2508 . . . . 5  |-  ( ph  ->  A. x  e.  A  B  e.  Fin )
7 iunfidisj 6842 . . . . 5  |-  ( ( A  e.  Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B )  ->  U_ x  e.  A  B  e.  Fin )
81, 6, 3, 7syl3anc 1217 . . . 4  |-  ( ph  ->  U_ x  e.  A  B  e.  Fin )
9 ax-1cn 7737 . . . 4  |-  1  e.  CC
10 fsumconst 11255 . . . 4  |-  ( (
U_ x  e.  A  B  e.  Fin  /\  1  e.  CC )  ->  sum_ k  e.  U_  x  e.  A  B 1  =  ( ( `  U_ x  e.  A  B )  x.  1 ) )
118, 9, 10sylancl 410 . . 3  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B
1  =  ( ( `  U_ x  e.  A  B )  x.  1 ) )
12 hashcl 10559 . . . 4  |-  ( U_ x  e.  A  B  e.  Fin  ->  ( `  U_ x  e.  A  B )  e.  NN0 )
13 nn0cn 9011 . . . 4  |-  ( ( `  U_ x  e.  A  B )  e.  NN0  ->  ( `  U_ x  e.  A  B )  e.  CC )
14 mulid1 7787 . . . 4  |-  ( ( `  U_ x  e.  A  B )  e.  CC  ->  ( ( `  U_ x  e.  A  B )  x.  1 )  =  ( `  U_ x  e.  A  B ) )
158, 12, 13, 144syl 18 . . 3  |-  ( ph  ->  ( ( `  U_ x  e.  A  B )  x.  1 )  =  ( `  U_ x  e.  A  B ) )
1611, 15eqtrd 2173 . 2  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B
1  =  ( `  U_ x  e.  A  B )
)
17 fsumconst 11255 . . . . 5  |-  ( ( B  e.  Fin  /\  1  e.  CC )  -> 
sum_ k  e.  B 
1  =  ( ( `  B )  x.  1 ) )
182, 9, 17sylancl 410 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  sum_ k  e.  B  1  =  ( ( `  B )  x.  1 ) )
19 hashcl 10559 . . . . 5  |-  ( B  e.  Fin  ->  ( `  B )  e.  NN0 )
20 nn0cn 9011 . . . . 5  |-  ( ( `  B )  e.  NN0  ->  ( `  B )  e.  CC )
21 mulid1 7787 . . . . 5  |-  ( ( `  B )  e.  CC  ->  ( ( `  B
)  x.  1 )  =  ( `  B
) )
222, 19, 20, 214syl 18 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( `  B )  x.  1 )  =  ( `  B ) )
2318, 22eqtrd 2173 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  sum_ k  e.  B  1  =  ( `  B ) )
2423sumeq2dv 11169 . 2  |-  ( ph  -> 
sum_ x  e.  A  sum_ k  e.  B  1  =  sum_ x  e.  A  ( `  B ) )
255, 16, 243eqtr3d 2181 1  |-  ( ph  ->  ( `  U_ x  e.  A  B )  = 
sum_ x  e.  A  ( `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   A.wral 2417   U_ciun 3821  Disj wdisj 3914   ` cfv 5131  (class class class)co 5782   Fincfn 6642   CCcc 7642   1c1 7645    x. cmul 7649   NN0cn0 9001  ♯chash 10553   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  hash2iun  11280  hashrabrex  11282  hashuni  11283
  Copyright terms: Public domain W3C validator