ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashiun Unicode version

Theorem hashiun 11904
Description: The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1  |-  ( ph  ->  A  e.  Fin )
fsumiun.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
fsumiun.3  |-  ( ph  -> Disj  x  e.  A  B
)
Assertion
Ref Expression
hashiun  |-  ( ph  ->  ( `  U_ x  e.  A  B )  = 
sum_ x  e.  A  ( `  B ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    B( x)

Proof of Theorem hashiun
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fsumiun.1 . . 3  |-  ( ph  ->  A  e.  Fin )
2 fsumiun.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
3 fsumiun.3 . . 3  |-  ( ph  -> Disj  x  e.  A  B
)
4 1cnd 8123 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  -> 
1  e.  CC )
51, 2, 3, 4fsumiun 11903 . 2  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B
1  =  sum_ x  e.  A  sum_ k  e.  B  1 )
62ralrimiva 2581 . . . . 5  |-  ( ph  ->  A. x  e.  A  B  e.  Fin )
7 iunfidisj 7074 . . . . 5  |-  ( ( A  e.  Fin  /\  A. x  e.  A  B  e.  Fin  /\ Disj  x  e.  A  B )  ->  U_ x  e.  A  B  e.  Fin )
81, 6, 3, 7syl3anc 1250 . . . 4  |-  ( ph  ->  U_ x  e.  A  B  e.  Fin )
9 ax-1cn 8053 . . . 4  |-  1  e.  CC
10 fsumconst 11880 . . . 4  |-  ( (
U_ x  e.  A  B  e.  Fin  /\  1  e.  CC )  ->  sum_ k  e.  U_  x  e.  A  B 1  =  ( ( `  U_ x  e.  A  B )  x.  1 ) )
118, 9, 10sylancl 413 . . 3  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B
1  =  ( ( `  U_ x  e.  A  B )  x.  1 ) )
12 hashcl 10963 . . . 4  |-  ( U_ x  e.  A  B  e.  Fin  ->  ( `  U_ x  e.  A  B )  e.  NN0 )
13 nn0cn 9340 . . . 4  |-  ( ( `  U_ x  e.  A  B )  e.  NN0  ->  ( `  U_ x  e.  A  B )  e.  CC )
14 mulrid 8104 . . . 4  |-  ( ( `  U_ x  e.  A  B )  e.  CC  ->  ( ( `  U_ x  e.  A  B )  x.  1 )  =  ( `  U_ x  e.  A  B ) )
158, 12, 13, 144syl 18 . . 3  |-  ( ph  ->  ( ( `  U_ x  e.  A  B )  x.  1 )  =  ( `  U_ x  e.  A  B ) )
1611, 15eqtrd 2240 . 2  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B
1  =  ( `  U_ x  e.  A  B )
)
17 fsumconst 11880 . . . . 5  |-  ( ( B  e.  Fin  /\  1  e.  CC )  -> 
sum_ k  e.  B 
1  =  ( ( `  B )  x.  1 ) )
182, 9, 17sylancl 413 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  sum_ k  e.  B  1  =  ( ( `  B )  x.  1 ) )
19 hashcl 10963 . . . . 5  |-  ( B  e.  Fin  ->  ( `  B )  e.  NN0 )
20 nn0cn 9340 . . . . 5  |-  ( ( `  B )  e.  NN0  ->  ( `  B )  e.  CC )
21 mulrid 8104 . . . . 5  |-  ( ( `  B )  e.  CC  ->  ( ( `  B
)  x.  1 )  =  ( `  B
) )
222, 19, 20, 214syl 18 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  (
( `  B )  x.  1 )  =  ( `  B ) )
2318, 22eqtrd 2240 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  sum_ k  e.  B  1  =  ( `  B ) )
2423sumeq2dv 11794 . 2  |-  ( ph  -> 
sum_ x  e.  A  sum_ k  e.  B  1  =  sum_ x  e.  A  ( `  B ) )
255, 16, 243eqtr3d 2248 1  |-  ( ph  ->  ( `  U_ x  e.  A  B )  = 
sum_ x  e.  A  ( `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   U_ciun 3941  Disj wdisj 4035   ` cfv 5290  (class class class)co 5967   Fincfn 6850   CCcc 7958   1c1 7961    x. cmul 7965   NN0cn0 9330  ♯chash 10957   sum_csu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-disj 4036  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by:  hash2iun  11905  hashrabrex  11907  hashuni  11908  phisum  12678  lgsquadlem1  15669  lgsquadlem2  15670
  Copyright terms: Public domain W3C validator