ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climuni Unicode version

Theorem climuni 11436
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climuni  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  A  =  B )

Proof of Theorem climuni
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 9343 . . 3  |-  1  e.  ZZ
2 nnuz 9628 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
3 1zzd 9344 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  1  e.  ZZ )
4 climcl 11425 . . . . . . . . . . 11  |-  ( F  ~~>  A  ->  A  e.  CC )
543ad2ant1 1020 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  A  e.  CC )
6 climcl 11425 . . . . . . . . . . 11  |-  ( F  ~~>  B  ->  B  e.  CC )
763ad2ant2 1021 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  B  e.  CC )
85, 7subcld 8330 . . . . . . . . 9  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( A  -  B )  e.  CC )
9 simp3 1001 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  A #  B )
105, 7, 9subap0d 8663 . . . . . . . . 9  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( A  -  B ) #  0 )
118, 10absrpclapd 11332 . . . . . . . 8  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( abs `  ( A  -  B )
)  e.  RR+ )
1211rphalfcld 9775 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( ( abs `  ( A  -  B
) )  /  2
)  e.  RR+ )
13 eqidd 2194 . . . . . . 7  |-  ( ( ( F  ~~>  A  /\  F 
~~>  B  /\  A #  B
)  /\  k  e.  NN )  ->  ( F `
 k )  =  ( F `  k
) )
14 simp1 999 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  F  ~~>  A )
152, 3, 12, 13, 14climi 11430 . . . . . 6  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )
16 simp2 1000 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  F  ~~>  B )
172, 3, 12, 13, 16climi 11430 . . . . . 6  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )
182rexanuz2 11135 . . . . . 6  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  B ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) ) ) )
1915, 17, 18sylanbrc 417 . . . . 5  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  B ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) ) )
20 nnz 9336 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  ZZ )
21 uzid 9606 . . . . . . . . 9  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
22 elex2 2776 . . . . . . . . 9  |-  ( j  e.  ( ZZ>= `  j
)  ->  E. k 
k  e.  ( ZZ>= `  j ) )
23 r19.2m 3533 . . . . . . . . . 10  |-  ( ( E. k  k  e.  ( ZZ>= `  j )  /\  A. k  e.  (
ZZ>= `  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) ) )  ->  E. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) ) )
2423ex 115 . . . . . . . . 9  |-  ( E. k  k  e.  (
ZZ>= `  j )  -> 
( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) ) )
2520, 21, 22, 244syl 18 . . . . . . . 8  |-  ( j  e.  NN  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) ) )
26 simpr 110 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  k )  e.  CC )
27 simpll 527 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  A  e.  CC )
2826, 27abssubd 11337 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  (
( F `  k
)  -  A ) )  =  ( abs `  ( A  -  ( F `  k )
) ) )
2928breq1d 4039 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  <-> 
( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) )
30 simplr 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  B  e.  CC )
31 subcl 8218 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
3231adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( A  -  B )  e.  CC )
3332abscld 11325 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( A  -  B )
)  e.  RR )
34 abs3lem 11255 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( A  -  B
) )  e.  RR ) )  ->  (
( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) ) )
3527, 30, 26, 33, 34syl22anc 1250 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) ) )
3633ltnrd 8131 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  -.  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) )
3736pm2.21d 620 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) )  ->  -.  1  e.  ZZ ) )
3835, 37syld 45 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  -.  1  e.  ZZ ) )
3938expd 258 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( A  -  ( F `  k )
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  ( ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  -.  1  e.  ZZ ) ) )
4029, 39sylbid 150 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  ( ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  -.  1  e.  ZZ ) ) )
4140impr 379 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  (
( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 )  ->  -.  1  e.  ZZ ) )
4241adantld 278 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  ->  -.  1  e.  ZZ ) )
4342expimpd 363 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4443rexlimdvw 2615 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4525, 44sylan9r 410 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4645rexlimdva 2611 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
475, 7, 46syl2anc 411 . . . . 5  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4819, 47mpd 13 . . . 4  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  -.  1  e.  ZZ )
49483expia 1207 . . 3  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  ( A #  B  ->  -.  1  e.  ZZ ) )
501, 49mt2i 645 . 2  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  -.  A #  B )
51 apti 8641 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)
524, 6, 51syl2an 289 . 2  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  ( A  =  B  <->  -.  A #  B ) )
5350, 52mpbird 167 1  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   1c1 7873    < clt 8054    - cmin 8190   # cap 8600    / cdiv 8691   NNcn 8982   2c2 9033   ZZcz 9317   ZZ>=cuz 9592   abscabs 11141    ~~> cli 11421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422
This theorem is referenced by:  fclim  11437  climeu  11439  climrecl  11467  summodclem2  11525  summodc  11526  prodmodclem2  11720  prodmodc  11721  ef0  11815  efcj  11816  efaddlem  11817
  Copyright terms: Public domain W3C validator