ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climuni Unicode version

Theorem climuni 11017
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climuni  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  A  =  B )

Proof of Theorem climuni
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 9038 . . 3  |-  1  e.  ZZ
2 nnuz 9317 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
3 1zzd 9039 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  1  e.  ZZ )
4 climcl 11006 . . . . . . . . . . 11  |-  ( F  ~~>  A  ->  A  e.  CC )
543ad2ant1 987 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  A  e.  CC )
6 climcl 11006 . . . . . . . . . . 11  |-  ( F  ~~>  B  ->  B  e.  CC )
763ad2ant2 988 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  B  e.  CC )
85, 7subcld 8041 . . . . . . . . 9  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( A  -  B )  e.  CC )
9 simp3 968 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  A #  B )
105, 7, 9subap0d 8373 . . . . . . . . 9  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( A  -  B ) #  0 )
118, 10absrpclapd 10915 . . . . . . . 8  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( abs `  ( A  -  B )
)  e.  RR+ )
1211rphalfcld 9451 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( ( abs `  ( A  -  B
) )  /  2
)  e.  RR+ )
13 eqidd 2118 . . . . . . 7  |-  ( ( ( F  ~~>  A  /\  F 
~~>  B  /\  A #  B
)  /\  k  e.  NN )  ->  ( F `
 k )  =  ( F `  k
) )
14 simp1 966 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  F  ~~>  A )
152, 3, 12, 13, 14climi 11011 . . . . . 6  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )
16 simp2 967 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  F  ~~>  B )
172, 3, 12, 13, 16climi 11011 . . . . . 6  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )
182rexanuz2 10718 . . . . . 6  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  B ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) ) ) )
1915, 17, 18sylanbrc 413 . . . . 5  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  B ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) ) )
20 nnz 9031 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  ZZ )
21 uzid 9296 . . . . . . . . 9  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
22 elex2 2676 . . . . . . . . 9  |-  ( j  e.  ( ZZ>= `  j
)  ->  E. k 
k  e.  ( ZZ>= `  j ) )
23 r19.2m 3419 . . . . . . . . . 10  |-  ( ( E. k  k  e.  ( ZZ>= `  j )  /\  A. k  e.  (
ZZ>= `  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) ) )  ->  E. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) ) )
2423ex 114 . . . . . . . . 9  |-  ( E. k  k  e.  (
ZZ>= `  j )  -> 
( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) ) )
2520, 21, 22, 244syl 18 . . . . . . . 8  |-  ( j  e.  NN  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) ) )
26 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  k )  e.  CC )
27 simpll 503 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  A  e.  CC )
2826, 27abssubd 10920 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  (
( F `  k
)  -  A ) )  =  ( abs `  ( A  -  ( F `  k )
) ) )
2928breq1d 3909 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  <-> 
( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) )
30 simplr 504 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  B  e.  CC )
31 subcl 7929 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
3231adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( A  -  B )  e.  CC )
3332abscld 10908 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( A  -  B )
)  e.  RR )
34 abs3lem 10838 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( A  -  B
) )  e.  RR ) )  ->  (
( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) ) )
3527, 30, 26, 33, 34syl22anc 1202 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) ) )
3633ltnrd 7843 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  -.  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) )
3736pm2.21d 593 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) )  ->  -.  1  e.  ZZ ) )
3835, 37syld 45 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  -.  1  e.  ZZ ) )
3938expd 256 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( A  -  ( F `  k )
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  ( ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  -.  1  e.  ZZ ) ) )
4029, 39sylbid 149 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  ( ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  -.  1  e.  ZZ ) ) )
4140impr 376 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  (
( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 )  ->  -.  1  e.  ZZ ) )
4241adantld 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  ->  -.  1  e.  ZZ ) )
4342expimpd 360 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4443rexlimdvw 2530 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4525, 44sylan9r 407 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4645rexlimdva 2526 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
475, 7, 46syl2anc 408 . . . . 5  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4819, 47mpd 13 . . . 4  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  -.  1  e.  ZZ )
49483expia 1168 . . 3  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  ( A #  B  ->  -.  1  e.  ZZ ) )
501, 49mt2i 618 . 2  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  -.  A #  B )
51 apti 8351 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)
524, 6, 51syl2an 287 . 2  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  ( A  =  B  <->  -.  A #  B ) )
5350, 52mpbird 166 1  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 947    = wceq 1316   E.wex 1453    e. wcel 1465   A.wral 2393   E.wrex 2394   class class class wbr 3899   ` cfv 5093  (class class class)co 5742   CCcc 7586   RRcr 7587   1c1 7589    < clt 7768    - cmin 7901   # cap 8310    / cdiv 8399   NNcn 8684   2c2 8735   ZZcz 9012   ZZ>=cuz 9282   abscabs 10724    ~~> cli 11002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8304  df-ap 8311  df-div 8400  df-inn 8685  df-2 8743  df-3 8744  df-4 8745  df-n0 8936  df-z 9013  df-uz 9283  df-rp 9398  df-seqfrec 10174  df-exp 10248  df-cj 10569  df-re 10570  df-im 10571  df-rsqrt 10725  df-abs 10726  df-clim 11003
This theorem is referenced by:  fclim  11018  climeu  11020  climrecl  11048  summodclem2  11106  summodc  11107  ef0  11292  efcj  11293  efaddlem  11294
  Copyright terms: Public domain W3C validator