ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climuni Unicode version

Theorem climuni 11256
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 2-Oct-1999.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
climuni  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  A  =  B )

Proof of Theorem climuni
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1z 9238 . . 3  |-  1  e.  ZZ
2 nnuz 9522 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
3 1zzd 9239 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  1  e.  ZZ )
4 climcl 11245 . . . . . . . . . . 11  |-  ( F  ~~>  A  ->  A  e.  CC )
543ad2ant1 1013 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  A  e.  CC )
6 climcl 11245 . . . . . . . . . . 11  |-  ( F  ~~>  B  ->  B  e.  CC )
763ad2ant2 1014 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  B  e.  CC )
85, 7subcld 8230 . . . . . . . . 9  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( A  -  B )  e.  CC )
9 simp3 994 . . . . . . . . . 10  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  A #  B )
105, 7, 9subap0d 8563 . . . . . . . . 9  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( A  -  B ) #  0 )
118, 10absrpclapd 11152 . . . . . . . 8  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( abs `  ( A  -  B )
)  e.  RR+ )
1211rphalfcld 9666 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( ( abs `  ( A  -  B
) )  /  2
)  e.  RR+ )
13 eqidd 2171 . . . . . . 7  |-  ( ( ( F  ~~>  A  /\  F 
~~>  B  /\  A #  B
)  /\  k  e.  NN )  ->  ( F `
 k )  =  ( F `  k
) )
14 simp1 992 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  F  ~~>  A )
152, 3, 12, 13, 14climi 11250 . . . . . 6  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )
16 simp2 993 . . . . . . 7  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  F  ~~>  B )
172, 3, 12, 13, 16climi 11250 . . . . . 6  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )
182rexanuz2 10955 . . . . . 6  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  B ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) ) ) )
1915, 17, 18sylanbrc 415 . . . . 5  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) )  /\  (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  B ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) ) )
20 nnz 9231 . . . . . . . . 9  |-  ( j  e.  NN  ->  j  e.  ZZ )
21 uzid 9501 . . . . . . . . 9  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
22 elex2 2746 . . . . . . . . 9  |-  ( j  e.  ( ZZ>= `  j
)  ->  E. k 
k  e.  ( ZZ>= `  j ) )
23 r19.2m 3501 . . . . . . . . . 10  |-  ( ( E. k  k  e.  ( ZZ>= `  j )  /\  A. k  e.  (
ZZ>= `  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) ) )  ->  E. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) ) )
2423ex 114 . . . . . . . . 9  |-  ( E. k  k  e.  (
ZZ>= `  j )  -> 
( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) ) )
2520, 21, 22, 244syl 18 . . . . . . . 8  |-  ( j  e.  NN  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) ) ) )
26 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( F `  k )  e.  CC )
27 simpll 524 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  A  e.  CC )
2826, 27abssubd 11157 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  (
( F `  k
)  -  A ) )  =  ( abs `  ( A  -  ( F `  k )
) ) )
2928breq1d 3999 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  <-> 
( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
) ) )
30 simplr 525 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  B  e.  CC )
31 subcl 8118 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
3231adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( A  -  B )  e.  CC )
3332abscld 11145 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( abs `  ( A  -  B )
)  e.  RR )
34 abs3lem 11075 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( A  -  B
) )  e.  RR ) )  ->  (
( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) ) )
3527, 30, 26, 33, 34syl22anc 1234 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) ) )
3633ltnrd 8031 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  -.  ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) ) )
3736pm2.21d 614 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( A  -  B
) )  <  ( abs `  ( A  -  B ) )  ->  -.  1  e.  ZZ ) )
3835, 37syld 45 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( ( abs `  ( A  -  ( F `  k ) ) )  <  ( ( abs `  ( A  -  B
) )  /  2
)  /\  ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  ->  -.  1  e.  ZZ ) )
3938expd 256 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( A  -  ( F `  k )
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  ( ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  -.  1  e.  ZZ ) ) )
4029, 39sylbid 149 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( F `  k )  e.  CC )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  ( ( abs `  ( ( F `  k )  -  B
) )  <  (
( abs `  ( A  -  B )
)  /  2 )  ->  -.  1  e.  ZZ ) ) )
4140impr 377 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  (
( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 )  ->  -.  1  e.  ZZ ) )
4241adantld 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) ) )  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  B ) )  <  ( ( abs `  ( A  -  B ) )  /  2 ) )  ->  -.  1  e.  ZZ ) )
4342expimpd 361 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4443rexlimdvw 2591 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4525, 44sylan9r 408 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4645rexlimdva 2587 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
475, 7, 46syl2anc 409 . . . . 5  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  (
( abs `  ( A  -  B )
)  /  2 ) )  /\  ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  B ) )  < 
( ( abs `  ( A  -  B )
)  /  2 ) ) )  ->  -.  1  e.  ZZ )
)
4819, 47mpd 13 . . . 4  |-  ( ( F  ~~>  A  /\  F  ~~>  B  /\  A #  B )  ->  -.  1  e.  ZZ )
49483expia 1200 . . 3  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  ( A #  B  ->  -.  1  e.  ZZ ) )
501, 49mt2i 639 . 2  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  -.  A #  B )
51 apti 8541 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  =  B  <->  -.  A #  B )
)
524, 6, 51syl2an 287 . 2  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  ( A  =  B  <->  -.  A #  B ) )
5350, 52mpbird 166 1  |-  ( ( F  ~~>  A  /\  F  ~~>  B )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348   E.wex 1485    e. wcel 2141   A.wral 2448   E.wrex 2449   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   1c1 7775    < clt 7954    - cmin 8090   # cap 8500    / cdiv 8589   NNcn 8878   2c2 8929   ZZcz 9212   ZZ>=cuz 9487   abscabs 10961    ~~> cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242
This theorem is referenced by:  fclim  11257  climeu  11259  climrecl  11287  summodclem2  11345  summodc  11346  prodmodclem2  11540  prodmodc  11541  ef0  11635  efcj  11636  efaddlem  11637
  Copyright terms: Public domain W3C validator